Biomedical Named Entity Recognition and Information Extraction with PubTator

Robert Leaman & Shankai Yan

May 10, 2019

Named Entities: Recognition and Normalization

Challenge: name variation

Pattern	Disease Examples		Pattern	Gene Examples	
Neoclassical	Nephropathy		Phenotype	White	
Enonyme	Schwartz-Jampel		appearance	swiss cheese	
еропутть	syndrome			Heat shock protein 60	
Anatomy	breast cancer		Function	Calmodulin	
Symptoms	cat-eye syndrome			suppressor of p53	
Causative agent	staph infection		Pon culture	Sonic hedgehog I'm Not Dead Vet	
Biomolecular	G6PD deficiency		r op culture	ken and barbie	
etiology			Creative	Cheap date	
Heredity	X-linked agammaglobulinemia				
Traditional	pica, founder			3	

Challenge: phrase variation

Mention Text	Concept name (MeSH/OMIM ID)
bipolar affective disorder	Bipolar disorder (D001714)
immunodeficiency disease	Immunological deficiency syndrome (D007153)
colon carcinoma	Colon cancer (D003110)
anaemia	Anemia (D000740)
pharungitis [sic]	Pharyngitis (D10612)
oral cleft	Cleft lip (D002971)
asthmatic	Asthma (D001249)
absence of functional C7	C7 deficiency (OMIM:610102)
widening of the vestibular aqueduct	Dilated vestibular aqueduct (OMIM:600791)

Challenge: ambiguity

Mention Text	Analysis
THE	English article or gene name?
White	Color or gene name?
founder	Horse disease or creator?
HD	HD gene or Huntington Disease?
P50	Human: NFKB1, CD40, or ARHGEF7?
kaliotoxin	Polypeptide: protein or chemical?
Zinc finger protein	Not anatomy, maybe not zinc
Acute Coronary Syndrome	"Acute" part of name, not modifier

Most searched topics in PubMed

A study on quality, efficiency, satisfaction, Journal of Biomedical Informatics, 2010

Key entity types

Disease	 diabetes mellitus; DM; type 2 diabetes
Genomic variation	• c.77A>C; c.77A->C; A77C; AC
Gene/Protein	• TP53; tumor protein p53; p53; BCC7; LFS1
Species	 Arabidopsis thaliana; thale-cress; AT
Chemical/Drug	 Aspirin; 2-(Acetyloxy)benzoic Acid; Acetysal
Cell line	• HEK293; 293 cells; human embryonic kidney 293

Our NER tools

Disease	• TaggerOne: 83.70%
Genomic variation	• tmVar 2.0: 86.24%
Gene/Protein	• GNormPlus: 86.70%
Species	• SR4GN 86.00%
Chemical/Drug	• TaggerOne: 89.50%
Cell line	• TaggerOne: 83.10%

- Freely available & open source
- High Performance
- Novel NLP techniques
- BioC format compatible for improved interoperability

Fundamental methods

- Dictionary based
 - Straightforward, efficient
 - Difficult to find new entities or different variations
- Rule based
 - Can find new entities
 - Rules created manually
 - Adaptation requires system modification
- Machine learning based
 - Can find new entities
 - Learns from examples; needs training data
 - Adaptation requires new training data

Most systems are hybrids

TaggerOne: joint NER and normalization

- Hypothesis: simultaneous normalization improves NER performance
- NER: rich feature approach
- Normalization score used as a feature in NER scoring

Leaman, Robert, and Zhiyong Lu. "TaggerOne: joint named entity recognition and normalization with semi-Markov Models." Bioinformatics 32.18 (2016): 2839-2846.

TaggerOne: joint NER and normalization

• Normalization: learns mapping from mention text to concept names

TaggerOne - results

Multiple resources enrich the lexicon

Online Mendelian Inheritance in Man

The global language of

healthcare

- Different organization, coverage & granularity
- Example: Hodgkin's Lymphoma
 - MeSH: 1 concept
 - OMIM: 3 concepts (inheritance)
 - UMLS: 7 (histopathology & demographics)
 - OrphaNet: 8 (histopathology)
 - Disease Ontology: 49 (histopathology & anatomical site)

Integrating lexical resources

- Method: use agreement between resources to learn the accuracy of each
- Model: predicted accuracy → expected pairwise agreements
- Training: observed agreement → updated accuracy prediction

Vocabulary added	NCBI Disease	BC5 CDR
+ Disease Ontology	+ 0.0%	+ 1.1%
+ MONDO	- 0.5%	+ 1.7%
+ PharmGKB	+ 1.8%	+ 2.3%
+ probable synonyms	+ 3.7%	+ 7.2%

https://www.ncbi.nlm.nih.gov/research/pubtator/

- Biomedical concept annotations
 - Genes/proteins, Genetic variants, Diseases, Chemicals, Species, Cell lines
 - New deep-learning based disambiguation
- PubMed abstracts & PMC Text Mining subset
 - Immediately available
 - Daily updates
- Web service: freely available, no installation
 - Wei, Chih-Hsuan, Hung-Yu Kao, and Zhiyong Lu. "PubTator: a web-based text mining tool for assisting biocuration." Nucleic acids research 41.W1 (2013): W518-W522.
 - Wei, C.H., Allot, A., Leaman, L. and Lu, Z. "PubTator Central: Automated Concept Annotation for Biomedical Full Text Articles" Nucleic Acids Research, *In press*.

PubTator

https://www.ncbi.nlm.nih.gov/research/pubtator/

- Online interface
 - Search
 - Visualize
 - Create collections
- RESTful service
- bulk FTP download

group by sort by bree Search Search Endocrine therapy-resistant breast cancer model cells are inhibited by soybean glyceollin I through Eleanor non-coding RNA Search I through Eleanor non-coding RNA I through Eleanor non-coding RNA Search I through Eleanor non-coding RNA I through Eleanor cell proliferation and endocrine therapy resistance. Previously, we have shown that a cluster of non-coding RNAs, Eleanors (ESR locus enhancing and activating non-coding RNAs) formed RNA cloud and upregulated the ESR gene in the nuclei of LTED cells. Eleanors were inhibited by resverator through Electronic supplement I through Eleanor RNA cloud and ESR mRNA I thr	PubTatorcentral	30315184	ſ	API	TUTORIAL
CHEMICAL was consistent with a distinct tertiary structure of glyceollin l for ER binding. AUTHOR CONTRIBUTIONS GLYCEOLLIN I (95) Glyceollin l preferentially inhibited the growth of LTED cells and induced apoptosis. COMPETING INTERESTS ESTROGEN (48) Our results suggest that glyceollin l has a novel role in LTED cell inhibition through Eleanors. In other words, LTED cells or endocrine therapy-resistant breast cancer Setters	group by ✓ sort by ✓ type freq Search ✓ GENE ER (73) RP18 (7) GAPDH (5) ANNEXIN V (5) MTOR (3) more ✓ DISEASE BREAST CANCER (21) TUMOR (9) DEATH (3) INFECTION (2) BREAST AND OVARIAN TUMORIGENESIS (2) more ✓ CHEMICAL GLYCEOLLIN I (95) ESTROGEN (48) RESVERATROL (47)	Endocrine therapy-resistant breast cancer model cells are inhibited by soybean glyceollin I through Eleanor non-coding RNA PMID30315184 PMC6185934 YAMAMOTO T, SAKAMOTO C NAKAO M SCI REP 2018 Intere Bloc XML Long-term estrogen deprivation (LTED) of an estrogen receptor (ER) alpha-positiv breast cancer cell line recapitulates cancer cells that have acquired estrogen independent cell proliferation and endocrine therapy resistance. Previously, w have shown that a cluster of non-coding RNAs, Eleanors (ESR1 locus enhancin and activating non-coding RNAs) formed RNA cloud and upregulated the SSR gene in the nuclei of LTED cells. Eleanors were inhibited by resveratro through Ef Here we prepared another polyphenol, glyceollin from stressed soybeans, an identified it as a major inhibitor of the Eleanor RNA cloud and ESR1 mRN. transcription. The inhibition was independent of ER, unlike one by resveratro. Thi was consistent with a distinct tertiary structure of glyceollin for ER binding Glyceollin preferentially inhibited the growth of LTED cells and induced apoptosis Our results suggest that glyceollin has a novel role in LTED cell inhibition throug Eleanors. In other words, LTED cells or endocrine therapy-resistant breast cancer	re g 1 R A A is g, s, h er	BioCo GEI Dis CHI CHI CHI CHI CHI CHI CHI CHI	Incepts NE SEASE EMICAL JTATION ECIES LLLINE ICTION ON S NIC SUPPLEMENTAR CONTRIBUTIONS NG INTERESTS

м. м.

PubTator: RESTful API

https://www.ncbi.nlm.nih.gov/research/pubtator-api/publications/ export/[Format]?[Type]=[Identifiers]&concepts=[Bioconcepts]

Formats:

28483577|t|Formoterol and fluticasone propionate combination improves histone deacetylation and antiinflammatory activities in bronchial epithelial cells exposed to cigarette sinoke. 28483577|a| The addition of long-acting beta2-agonists (LABAs) to cortico teroids improves asthma control.

List of formation of the second propionate (FP) in human brouch all epithelial cells exposed to cigarette smoke extracts (CSE) are unknown. The present study provides compelling evidences that

- pubtator pmices mole stress due to cigarette smoke extracts (CSE) are unknown. The present study provides compelling evidences that stress due to cigarette smoke exposure increasing the anti-inflammatory effects of FP.
- biocxml pmc^{*}/d^{*}/₂₈₄₈₃₅₇₇ P^{*}/₉₃₁ C620773^{*}/_{DAC2} Species⁸⁴ mutation, cellline

28483577	1022	1027	IL-1b	Gene	3553
28483577	1245	1250	HDAC3	Gene	8841
28483577	1264	1269	HDAC2	Gene	3066

Other tools

• MetaMap & MetaMap lite: identifies UMLS concepts

Aronson, Alan R. "Effective mapping of biomedical text to the UMLS Metathesaurus: the MetaMap program." Proceedings of the AMIA Symposium. American Medical Informatics Association, 2001.

Demner-Fushman, Dina, Willie J. Rogers, and Alan R. Aronson. "MetaMap Lite: an evaluation of a new Java implementation of MetaMap." Journal of the American Medical Informatics Association 24.4 (2017): 841-844.

• cTAKES: framework based on UIMA to build pipeline systems

Savova, Guergana K., et al. "Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): architecture, component evaluation and applications." Journal of the American Medical Informatics Association 17.5 (2010): 507-513.

• Web services: BeCAS and Thalia

Nunes, Tiago, et al. "BeCAS: biomedical concept recognition services and visualization." Bioinformatics 29.15 (2013): 1915-1916. Soto, A.J., Przybyła, P. and Ananiadou, S. (2018) Thalia: Semantic search engine for biomedical abstracts. Bioinformatics, bty871

ezTag: interactive annotation https://eztag.biogrator.org/

🗞 ezTag Collections Lexicons Models Tutorial	💄 ID: c3a2048ee892
< Back BioC Info Download Pemo	Curatable Done
title 01	▼ 2 Refresh
Selective inhibition of the renal donamine subtype D1A receptor induces antinatriuresis in conscious rats	Text
Multitissue UBERON:0	00 Q vasculature
abstract 💿 1	Q , renal
Both dopamine D1-like (D1A and D1B) and D2-like (D2, D3, and D4) receptor subfamilies are present in the kidney. Blockade of the intrarenal D1-like receptor family is	Q kidney
associated with natriuresis and diuresis. Because the D1A and D1B receptor subtypes are not distinguishable by currently available dopaminergic agents, their	Q renal
functional role remains undefined. In the present study, the effect of selective inhibition of the renal D1A receptor with phosphorothioated antisense	Q renal
oligodeoxynucleotide (AS-ODN) was investigated in conscious uninephrectomized rats. After renal interstitial administration of Texas red-labeled D1A receptor AS-	Q kidney
ODN, intense fluorescent signal was localized in the renal tubular epithelium and vasculature. In rats on normal salt intake, AS-ODN injected interstitially into the kidney	Q renal
reduced daily urinary sodium excretion (1.4+/-0.04 versus 0.8+/-0.2 mEq/d, n=5, P<0.05) and urine output (16.9+/-3.8 versus 12.5+/-3.6 mL/d, n=5, P<0.05). In rats on	Q renal
high sodium intake, continuous renal interstitial administration of D1A receptor AS-ODN transiently decreased daily urinary sodium excretion (5.4+/-0.5 versus	Q renal
4.2+/-0.3 mEq/d, n=7, P<0.01) and urine output (27.6+/-4.5 versus 18.1+/-1.8 mL/d, n=7, P<0.01). Neither vehicle nor sense oligodeoxynucleotide had significant effects. Organism UBERON:0	00 Q blood
Systolic blood pressure remained unchanged. The renal D1A receptor protein was significantly decreased by 35% and 46% at the end of the study in AS-ODN-treated	Q urinary
rats on normal and high salt intake, respectively, whereas the D1B receptor and beta-actin were not affected. These results provide the first direct evidence that the Organism UBERON:0	00 Q urinary
renal D1A receptor subtype plays an important role in the control of sodium excretion.	
	00 O ropal tubular opitholium

Kwon, Dongseop, et al. "ezTag: tagging biomedical concepts via interactive learning." Nucleic acids research 46.W1 (2018): W523-W529. 19

What and why?

Information Extraction after NER

 Chemical
 Knowle description phosphoribosyltransferase *Adenine phosphoribosyltransferase plays a role in purine salvage by catalyzing the direct conversion of Chemical*
 Bigestion phosphoribosyltransferase *Gene Gene Gene*

Much less costly and less time-consuming

What kinds of information do we expect?

- Protein Interaction (e.g. signal transduction)
- Drug Interaction (e.g. side effect using aspirin and warfarin)
- Gene Disease Association (e.g. PARKx and Parkinson's Disease)
- Drug Gene Interaction (e.g. druggable genes)
- Genotype Phenotype Association

Which data resource do we use?

Biomedical Literature

Clinical Notes

i2b2

Shared Tasks

BioCreative

DDIExtraction

BioNLP-ST

i2b2

Traditional Machine Learning Methods

- Handcrafted Features
 - Tokens
 - Part-of-speech (NP, VVP, etc.)
 - Entity type
 - Grammatical function tag (SBJ,OBJ,ADV, etc.)
 - Distance in the parse tree

- Classical ML models
 - Support Vector Machine (SVM)

Deep Learning Methods

- Word Embedding (cbow,skipgram,fastText,glove) or Language Model (ELMo, GPT, BERT)
- Sequence to Vector Encoder
 - Bag of Embedding (average or sum)
 - RNN (e.g. LSTM, GRU)
 - CNN
- Classifier:
 - Feedforward Layer
 - Linear Layer

Example for Deep Learning

CNN

Peng, Yifan, et al. "Extracting chemical–protein relations withensembles of SVM and deep learning models." *Database* 2018 (2018).

window sizes

layer with softmax

Traditional ML v.s. Deep Learning

Traditional ML

Deep Learning

- Hand crafted features
- Simple logic of the methodology
- Computationally efficient (CPU)
- Decent performance

- Automatic feature extractions
- Complicated architecture
- Require more computations (GPU)
- Improved excellent performance

Traditional ML v.s. Deep Learning

Performance comparison for the ChemProt task at BioCreative VI

Peng, Yifan, et al. "Extracting chemical–protein relations withensembles of SVM and deep learning models." *Database* 2018 (2018).

Challenges

- Limited Annotations
- Complex Relation Extraction
 - Biomedical event (trigger detection, argument recognition, event prediction)
 - Multiple level event
 - Nesting relationships
- Complex Interaction/Regulation/Association Network

Future Directions

- General relation extraction model
- Clinical relation extraction from electronic health record
- Large-scale complex relation extraction
- Transfer learning

Acknowledgements

- Zhiyong Lu
- Chih-Hsuan Wei
- Alexis Allot
- Rezarta Islamaj
- Dongseop Kwon
- Sun Kim
- Yifan Peng
- Qinyu Cheng

Intramural Research Program Our Research Changes Lives Thank You!