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Representation learning

• atgggtaaaataattggtatcgacct

• tgaggtcgtagagtagacca

• 4n possible sequences
• Real sequences occupy a tiny fraction of all possible sequences

dnaK

random



Mapping the spaces: starting from raw seqs

Sequence space Structural space Functional space



Embedding for categorical variables

puppy [1, 0, 0, 0]
dog [0, 1, 0, 0]
kitten [0, 0, 1, 0]
cat [0, 0, 0, 1]

puppy [0.9, 1.0, 0.0, 0.2]
dog [1.0, 0.2, 0.0, 0.9]
kitten [0.0, 1.0, 0.5, 0.1]
cat [0.0, 0.2, 1.0, 1.0]

From the Instacart blog post 'Deep Learning with Emojis (not Math)'



Normal => Tumor
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What is Machine Learning?
The complexity in traditional computer programming 
is in the code (programs that people write). In 
machine learning,  algorithms (programs) are in 
principle simple and the complexity (structure) is in 
the data. Is there a way that we can automatically 
learn that structure? That is what is at the heart of 
machine learning. 

-- Andrew Ng

That is, machine learning is the about the construction and study 
of systems that can learn from data. This is very different than
traditional computer programming.
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Examples in applying ML to NGS data

• Classifying cancer type with gene expression profiles

• Removing study bias in tumor gene expression profiles

• Classifying cancer type with SNP data

• Drug response prediction - introduction



Four Typical Problems



Deep learning in biology and medicine

https://github.com/greenelab/deep-review

https://github.com/greenelab/deep-review


Tensorflow playground

Keras.js

https://playground.tensorflow.org/
https://transcranial.github.io/keras-js/




A few “good” runs



Deep Learning Basics







Mathematical Model of a Neuron

z = w⋅x + b o = φ(z)



Activation



Loss and Accuracy

Regression problem
y_true:   [   -50,     -10,    +80 ] 
y_pred:  [    -30,    +10,    +60 ]
MSE = 0.04

y_true:   [   -50,     -10,    +80 ] 
y_pred:  [    -50,    -10,    +45 ] 
MSE = 0.04

Classification view
[ 1, 1, 0 ]
[ 1, 0, 1 ]
ACC = 0.67

[ 1, 1, 0 ]
ACC = 1.00 



Classification loss

• Softmax
• Cross entropy
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Human Vision System
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Increasing Depth Works…



Example CNNs Structures from 
ILSVRC Winners
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Deep Residual Learning 

Deep	Residual	Learning

• b 0 is	a	residual mapping	w.r.t.	identity

Kaiming	He,	Xiangyu	Zhang,	Shaoqing	Ren,	&	Jian	Sun.	“Deep	Residual	Learning	for	Image	Recognition”.	CVPR	2016.

• If	identity	were	optimal,
easy	to	set	weights	as	0

• If	optimal	mapping	is	closer	to	identity,
easier	to	find	small	fluctuations

weight	layer

weight	layer

relu

relu

0

a 0 = b 0 + 0

identity
0

b(0)
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Deep Residual Learning 
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Network	“Design”

• Keep	it	simple

• Our	basic	design (VGG-style)
• all	3x3	conv	(almost)

• spatial	size	/2		=>	#	filters	x2	(~same	complexity	per	layer)

• Simple	design;	just	deep!

• Other	remarks:
• no	hidden	fc
• no	dropout

Kaiming	He,	Xiangyu	Zhang,	Shaoqing	Ren,	&	Jian	Sun.	“Deep	Residual	Learning	for	Image	Recognition”.	CVPR	2016.

plain	net ResNet
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Dropout





Essential Deep Learning Resources
• Books 

• Michael Nielsen’s free online book on deep learning
• Deep Learning textbook (Goodfellow et al, 2016)
• Deep Learning with Python (Keras book)

• Online courses
• FastAI
• Stanford CS231n
• Andrew Ng

• Python
• Python Cookbook, 3rd Edition

• Other resources
• PyTorch tutorials
• Kaggle kernels / discussions; No free hunch interviews
• Twitter
• arxiv-sanity
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Improving Models with Domain Knowledge
• Books 

• Michael Nielsen’s free online book on deep learning
• Deep Learning textbook (Goodfellow et al, 2016)
• Deep Learning with Python (Keras book)

• Online courses
• FastAI
• Stanford CS231n
• Andrew Ng

• Python
• Python Cookbook, 3rd Edition

• Other resources
• PyTorch tutorials
• Kaggle kernels / discussions; No free hunch interviews
• Twitter
• arxiv-sanity

34



Cancer Type Classification 
with RNAseq









RPKM (reads per kilobase per 
million mapped reads)
Upper Quantile (UQ)



Each Sample has > 60,000 columns



Encode numeric columns

• Log transformation: log (1+x)

• Standard scalar: z score 

• Rank => Gaussian

• Discretization

• Mark missing values



One Hot Encoding of Categories



Open Source Framework Comparison







DNN hyperparameter examples
• Data preprocess 

• Positive features: logarithmic transformation y = log(1+x)
• Mixed features: standard scaler

• Number of hidden layers: 4
• Number of neurons in hidden layers: 4000-2000-1000-1000
• Activation function: ReLU
• Dropouts: Input: 0%; layers 1,2,3: 25%; layer 4: 10%
• Initialization: no unsupervised pretraining
• Optimization: learning rate = 0.05, momentum = 0.9, and weight decay = 0.0001

• Training epochs: as large as possible (dropout can prevent overfitting)



Code Examples

https://github.com/ECP-CANDLE/Benchmarks/blob/master/Pilot1/TC1/tc1_baseline_keras2.py


Cancer Type Classification



Cancer Type Classification
18 types each with ~300 RNAseq profiles

https://github.com/ECP-CANDLE/Benchmarks/tree/frameworks/Pilot1/TC1



Cancer Type Classification
18 types each with ~300 RNAseq profiles

https://github.com/ECP-CANDLE/Benchmarks/tree/frameworks/Pilot1/TC1



VAE Latent Representation of  GDC Expression
Uterine Corpus 
Endometrial Carcinoma

Thyroid Carcinoma

Skin Cutaneous Melanoma

Prostate Adenocarcinoma

Other Cancer Types

Lung Squamous Cell 
Carcinoma

Lung Adenocarcinoma

Head and Neck Squamous 
Cell Carcinoma

Breast Invasive Carcinoma

Brain Lower Grade Glioma

https://github.com/ECP-CANDLE/Benchmarks/tree/frameworks/Pilot1/P1B1



How did we know it might work?

• Build autoencoders first with the features you are going to work with
• If you get reasonable accuracy then the model can learn a 

representation and that is a good sign
• Class balance seems to matter
• Number of training examples matters > 1000 is good > 10,000 better, 

> 100,000 much better
• Hyper parameter search is also important once you get something 

that basically works
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Generate Compact Molecular Signatures

• For each agent or class of agents we will apply feature selection methods 
to the models to generate where possible a compact molecular signature 
that retains prediction performance 

• Typical reduced signatures include O(10)-O(100) features from >> 50,000 starting 
features

• Features may be genes, SNPs, µRNA etc.

• Developed and applied multiple feature selection methods
• Selection criterion: Chi2, Anova, mutual info, ensemble ML, deep neural networks
• Algorithms: ranking, intersection, iterative selection, joint mutual information 

maximization
• Supervised recursive binning

• Extracted compact features
• Features from cancer type prediction
• 50 features: 0.981 accuracy
• 20 features: 0.976 accuracy
• 14 features: 0.973 accuracy
• RNAseq is more informative than miRNA



Analyze Molecular Signatures to Provide Insight to Potential 
Mechanisms
• Started mapping gene features to pathways 

• Enrichment analysis will be applied to the signatures to identify associated pathways
• Pathways will be identified that associate with both sensitive and resistant response 

phenotypes

• Identified co-located or known interacting pairs of gene and microRNA 
signatures

• Top miRNA feature hsa.mir.10a is co-
located with ENSG00000120075.5

• It has also been experimentally 
verified that this miRNA 
downregulates the corresponding 
HOX genes 



Close examination of prediction error

• Confusion matrix
• Local feature importance
• Force plots



RNAseq Bias Removal 
Alex Partin

https://github.com/DOE-NCI-Pilot1/Normalization/blob/master/RNASeqNorm/normalize_rnaseq.ipynb


Cancer Type Classification 
with SNPs



GDC: 10K samples with 10M mutations





How to deal with n >> p ?

• Dropout
• Regularization
• Locally connected networks



Diet Network

• Suppose we have 
• 1000 samples
• 1,000,000 features
• 100 neurons in the hidden layer

• Parameters in first layer = 100M



How do we represent the sparse mutations?

• Gene level / pathway level

• Weighting by impact

• Filtering by significance

• Convert to images 
• Variant calling
• Annotation

MutSigCV



Deep annotation with compare region images



Identification of genomic islands and operons

Assaf et al. 2019







Gene sets from MSigDB
22,596 gene sets



Gene2vec                         Sample2image

Alena Harley, The Mystery of the Origin



78% accuracy

Alena Harley, The Mystery of the Origin



Drug Response Prediction



Modeling Drug Response
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𝓡 = 𝑓(𝓣, 𝓓)

gene expression levels
SNPs
protein abundance
microRNA
methylation

IC50
GI50
% growth
Z-score
AUC

descriptors
fingerprints
structures
SMILES
dose

Drug (s)

→

Tumor

→

Response

𝓡 = 𝑓(𝓣, 𝓓1 , 𝓓2)
→



Cell Line Features

• NCI-60: 60 cell lines

• Molecular Assays: 20 
• Gene expression array 
• RNA-seq
• Mutations
• Protein abundance
• microRNA

Figure adapted from Kundaje et al. Nature 2015



Drug Features

• SMILES strings
• 2D or 3D structures
• Graph convolutions
• Descriptors
• Fingerprints



Deep Learning Model for Drug Pair Response



Uno: Predicting Single/Paired Drug Response 

Unlabeled Molecular Data
(e.g., 1 M LINCS expressions)

Unlabeled Drug Data
(e.g., 2 M ChEMBL drugs)

Dose 1 Dose 2

Unified 
Dose-Aware

Single/Multiple 
Drug Model

Auxiliary 
Molecular 
Predictions

(e.g. cancer type)  

Auxiliary
Drug Predictions

(e.g. MOA)  

Intermediate 
Prediction 

Targets



UnoMT Additional tasks
• Cancer type
• Tumor site
• Normal vs Tumor
• Drug target family
• Drug-likeness score 



Organoid cultures for the analysis of cancer phenotypes, Sachs and Clevers, 2014 



Data in place for model training and testing
Pilot 1



Patient Derived Xenograft Models
Pilot 1
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Cancer Cell Lines

CL and PD Xenografts



ZFZJ2-1, 146476-266-
R, Urothelial/bladder 
ca

AZD8055 ~2.2x delay. No regression

Paclitaxel 125973
AZD8055 758871
Dinaciclib 764036
Docetaxel 628503
GSK-461364 754354
Methotrexate 740



ZFZJ2-1, 146476-266-R, Urothelial/bladder ca
Heterogeneity

Op Meeting:



CANDLE prediction 
analysis notebook

file:///Users/fangfang/Downloads/CANDLE-prediction-exploration.html
file:///Users/fangfang/Downloads/CANDLE-prediction-exploration.html


Perceptual distance vs data distance

• Metric learning
• Representation learning
• Feature encoding
• Embedding
• WordVec, ProteinVec



Siamese network

Distance

Pairs could be gene expression replicates
or samples from the same cancer type



Focusing on the difficult parts

• Mine the difficult samples

• Change loss function





DL Challenge:

from surface pattern recognition 
to deep mechanistic understanding



Just fancy regression?
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=>    88

Sequence to sequence models Function approximation







Thank you


