Machine Learning for Data Generated from Next-Generation Sequencing

Fangfang Xia

fangfang@anl.gov Computer Scientist Argonne National Laboratory 2019-10-23

DOE-NCI partnership to advance exascale development through cancer research

Jeremy Howard @jeremyphoward · 22h

Seems like there is a real revolution going on in protein analysis thanks to deep learning language models. Here's an example that just got published

Unified rational protein engineering with sequence-...

UniRep learns fundamental protein features from millions of amino-acid sequences using a recurrent neural network. This summary of features can then be used ...

nature.com

629

> 8 1146

Representation learning

dnaK

atgggtaaaataattggtatcgacct

random

tgaggtcgtagagtagacca

- 4ⁿ possible sequences
 - Real sequences occupy a tiny fraction of all possible sequences

Mapping the spaces: starting from raw seqs

Sequence space

Structural space

Functional space

Embedding for categorical variables

From the Instacart blog post 'Deep Learning with Emojis (not Math)'

BIOLOGICAL STRUCTURE AND FUNCTION EMERGE FROM SCALING UNSUPERVISED LEARNING TO 250 MILLION PROTEIN SEQUENCES

Alexander Rives *^{††} Siddharth Goyal *[§] Joshua Meier *[§] Demi Guo *[§] Myle Ott [§] C. Lawrence Zitnick [§] Jerry Ma ^{†§} Rob Fergus ^{††§}

In the field of artificial intelligence, a combination of scale in data and model capacity enabled by unsupervised learning has led to major advances in representation learning and statistical generation. In biology, the anticipated growth of sequencing promises unprecedented data on natural sequence diversity. Learning the natural distribution of evolutionary protein sequence variation is a logical step toward predictive and generative modeling for biology. To this end we use unsupervised learning to train a deep contextual language model on 86 billion amino acids across 250 million sequences spanning evolutionary diversity. The resulting model maps raw sequences to representations of biological properties without labels or prior domain knowledge. The learned representation space organizes sequences at multiple levels of biological granularity from the biochemical to proteomic levels. Learning recovers information about protein structure: secondary structure and residue-residue data, the ability to identify tertiary contacts is further improved. Learning on full sequence diversity rather than individual protein families increases recoverable information about secondary structure. We show the networks generalize by adapting them to variant activity prediction from sequences only, with results that are comparable to a state-of-the-art variant predictor that uses evolutionary and structurally derived features.

[†]Correspondence to <arives@cs.nyu.edu>, <maj@fb.com>, and <robfergus@fb.com> [‡]Dept. of Computer Science, New York University, USA [§]Facebook AI Research, USA

What is Machine Learning?

The complexity in traditional computer programming is in the code (programs that people write). In machine learning, algorithms (programs) are in principle simple and the complexity (structure) is in the data. Is there a way that we can automatically learn that structure? That is what is at the heart of machine learning.

-- Andrew Ng

That is, machine learning is the about the construction and study of systems that can learn from data. This is very different than traditional computer programming.

Examples in applying ML to NGS data

- Classifying cancer type with gene expression profiles
- Removing study bias in tumor gene expression profiles
- Classifying cancer type with SNP data
- Drug response prediction introduction

Four Typical Problems

Deep learning in biology and medicine

https://github.com/greenelab/deep-review

Tensorflow playground

A few "good" runs

Deep Learning Basics

Mathematical Model of a Neuron

Activation

$$\sigma(z) \equiv \frac{1}{1 + e^{-z}}.$$

Name	Plot	Equation	Derivative
Identity		f(x) = x	f'(x) = 1
Binary step		$f(x) = \begin{cases} 0 & \text{for } x < 0\\ 1 & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x \neq 0 \\ ? & \text{for } x = 0 \end{cases}$
Logistic (a.k.a Soft step)		$f(x) = \frac{1}{1 + e^{-x}}$	f'(x) = f(x)(1 - f(x))
TanH		$f(x) = \tanh(x) = \frac{2}{1 + e^{-2x}} - 1$	$f'(x) = 1 - f(x)^2$
ArcTan		$f(x) = \tan^{-1}(x)$	$f'(x) = \frac{1}{x^2 + 1}$
Rectified Linear Unit (ReLU)		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x < 0\\ 1 & \text{for } x \ge 0 \end{cases}$
Parameteric Rectified Linear Unit (PReLU) ^[2]		$f(x) = \begin{cases} \alpha x & \text{for } x < 0\\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} \alpha & \text{for } x < 0\\ 1 & \text{for } x \ge 0 \end{cases}$
Exponential Linear Unit (ELU) ^[3]		$f(x) = \begin{cases} \alpha(e^x - 1) & \text{for } x < 0\\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} f(x) + \alpha & \text{for } x < 0\\ 1 & \text{for } x \ge 0 \end{cases}$
SoftPlus		$f(x) = \log_e(1 + e^x)$	$f'(x) = \frac{1}{1 + e^{-x}}$

Loss and Accuracy

Regression problem y_true: [-50, -10, +80] [1, 1, 0] y pred: [-30, +10, +60] [1, 0, 1] MSE = 0.04

Classification view ACC = 0.67

y_true: [-50, -10, +80] [1,1,0] y_pred: [-50, -10, +45] ACC = 1.00MSE = 0.04

Classification loss

• Softmax

How different are the two probability distributions?

Cross entropy

scores	softmax	probabilities	true probabilities	cross entropy
0.6		0.059	0.1	
-1	e^{z_j}	0.012	0.2	
3.2	$\sum_{k=1}^{K} e^{z_k}$	0.797	0.6	0.866
1.4		0.132	0.1	

 $H(p,q) = -\sum_x p(x) \, \log q(x) \, ,$

Human Vision System

Increasing Depth Works...

ImageNet Classification top-5 error (%)

Example CNNs Structures from ILSVRC Winners

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". CVPR 2016.

Deep Residual Learning

• F(x) is a residual mapping w.r.t. identity

Deep Residual Learning

Network "Design"

- Keep it simple
- Our basic design (VGG-style)
 - all 3x3 conv (almost)
 - spatial size /2 => # filters x2 (~same complexity per layer)
 - Simple design; just deep!
- Other remarks:
 - no hidden fc
 - no dropout

Dropout

SRIVASTAVA, HINTON, KRIZHEVSKY, SUTSKEVER AND SALAKHUTDINOV

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right: An example of a thinned net produced by applying dropout to the network on the left. Crossed units have been dropped.

Andres Torrubia @antor · Oct 18 Replying to @radekosmulski Sometimes it feels like

QUESTION 8/10

As demonstrated in research, what is the trick that enables training a 10_000 layer deep neural network?

 \sim

dropout
batchnorm
initialization
thoughts and prayers
Submit answer

Essential Deep Learning Resources

• Books

- Michael Nielsen's free online book on deep learning
- Deep Learning textbook (Goodfellow et al, 2016)
- Deep Learning with Python (Keras book)
- Online courses
 - FastAl
 - Stanford CS231n
 - Andrew Ng
- Python
 - Python Cookbook, 3rd Edition
- Other resources
 - PyTorch tutorials
 - Kaggle kernels / discussions; No free hunch interviews
 - Twitter
 - arxiv-sanity

Improving Models with Domain Knowledge

Books

- Michael Nielsen's free online book on deep learning
- Deep Learning textbook (Goodfellow et al, 2016)
- Deep Learning with Python (Keras book)
- Online courses
 - FastAl
 - Stanford CS231n
 - Andrew Ng
- Python
 - Python Cookbook, 3rd Edition
- Other resources
 - PyTorch tutorials
 - Kaggle kernels / discussions; No free hunch interviews
 - Twitter
 - arxiv-sanity

About 10,000 deep learning papers have been written about "hard-coding priors about a specific task into a NN architecture works better than a lack of prior" -- but they're typically being passed as "architecture XYZ offers superior performance for [overly generic task category]"

74	49 Likes		168 Retweets		
Jun 1, 20	019 at 5:19 PM		via Twitter W	eb Client	
1	tì	•	Ċ	ଡ	

François Chollet @fchollet 36d You can always "buy" performance by either training on more data, better data, or by injecting task information into the architecture or the preprocessing. However, this isn't informative about the generalization power of the techniques used (which is the only thing that matters) Cancer Type Classification with RNAseq

RPKM (reads per kilobase per million mapped reads) Upper Quantile (UQ)

FPKM

The Fragments per Kilobase of transcript per Million mapped reads (FPKM) calculation normalizes read count by dividing it by the gene length and the total number of reads mapped to protein-coding genes.

Upper Quartile FPKM

The upper quartile FPKM (FPKM-UQ) is a modified FPKM calculation in which the total protein-coding read count is replaced by the 75th percentile read count value for the sample.

Calculations

$$FPKM = \frac{RC_g * 10^9}{RC_{pc} * L} \qquad FPKM - UQ = \frac{RC_g * 10^9}{RC_{g75} * L}$$

• RC₆: Number of reads mapped to the gene • RC₆: Number of reads mapped to all protein-coding genes • RC₆₇₅: The 75th percentile read count value for genes in the sample • L: Length of the gene in base pars

Note: The read count is multiplied by a scalar (10⁹) during normalization to account for the kilobase and 'million mapped reads

Each Sample has > 60,000 columns

•						📄 Pi	ilot1 — r	root@45	af2ce56	389: /w	/orkspac	e/BMF-	5/Pilot1/	Combo -	– less -	S combi	ned_rna	seq_dat	a — 225	5×61							
Sample A1BG	A1CF	A2M	A2ML1	A3GALT	T2 A4GALT	A4GNT	AAAS	AACS	AADAC	AADACL	2 AADACL	.3 AADACL	4 AADAT	AAED1	AAGAB	AAK1	AAMDC	AAMP	AANAT	AAR2	AARD	AARS	AARS2	AARSD1	AASDH	AASDHPPT	в
CCLE.22RV1	1.00	4.06	2.70	0.07	0.15	0.30	0.00	6.80	4.51	0.00	0.00	0.00	0.00	3.81	2.09	6.07	2.32	2.19	7.20	0.31	5.43	0.30	8.34	4.68	5.38	4.20 6	
CCLE.2313287	0.03	3.06	0.03	0.07	0.00	1.74	0.03	5.69	3.00	0.06	0.00	0.00	0.00	0.08	3.15	6.25	1.81	3.25	6.86	0.06	5.60	0.00	8.97	4.07	5.41	3.63 6	
CCLE.253J	0.82	0.00	0.08	0.01	0.00	3.35	0.53	6.44	2.68	0.06	0.00	0.00	0.04	0.06	2.74	6.80	2.17	3.22	7.05	0.29	4.86	0.00	7.60	3.75	5.53	2.80 5	
CCLE.253JBV	0.36	0.00	0.16	0.01	0.06	4.14	0.48	6.33	3.32	0.04	0.01	0.00	0.00	0.01	3.10	6.61	1.55	2.95	7.52	1,12	4.98	0.06	7.82	4.19	5.78	3.30 5	
CCLE.42MGBA	3.30	0.00	0.10	0.00	0.48	1.07	0.16	6.06	2.98	0.16	0.00	0.00	0.00	3.10	3.20	5.55	2.06	4.80	7.06	0.03	5.88	0.00	7.86	4.64	5.53	2.97 5	
CCLE.5637	0.06	0.00	0.14	2.45	0.03	4.22	0.00	5.98	3.58	0.70	0.00	0.00	0.00	4.88	3.41	5.75	2.07	4.27	7.06	0.28	6.00	0.00	6.15	4.40	6.28	2.20 6	
CCLE.59M	2.68	0.00	0.52	0.03	0.11	3.51	0.00	5.90	2.98	1.90	0.00	0.00	0.07	1.00	3.83	5.13	1.69	4.80	7.48	0.10	5.24	0.77	8.54	3.85	5.59	3.16 5	
CCLE.639V	2.76	0.00	0.03	0.01	0.11	1.05	0.21	6.34	3.40	0.04	0.00	0.00	0.00	3.88	3.02	5.37	2.13	4.60	7.76	0.31	5.44	0.01	7.18	5.03	5.69	3.07 6	
CCLE.647V	0.32	0.00	0.16	0.01	0.00	2.07	0.00	5.42	3.69	0.06	0.00	0.00	0.00	2.42	3.08	6.42	2.45	4.66	7.62	0.19	5.76	0.00	7.82	4.78	5.61	2.48 5	
CCLE.697	3.32	0.00	0.39	0.03	0.19	0.04	0.03	6.24	1.07	0.00	0.00	0.00	0.00	0.03	0.33	5.09	2.07	4.21	6.95	0.06	5.24	0.03	8.03	4.50	5.88	3.36 5	
CCLE.769P	0.03	1.53	0.32	0.01	0.10	2.11	0.37	6.02	3.26	0.14	0.00	0.00	0.00	2.43	3.76	5.65	1.71	4.17	7.21	0.29	5.09	0.07	7.90	4.33	5.72	2.69 4	
CCLE. 7800	0.00	0.00	0.05	0.00	0.04	2.04	0.12	5.56	3.33	00.00	0.01	0.00	0.00	3.05	4.80	0.00	1.09	5.64	0.92	0.05	5.04	0.05	8.15	3.74	4.57	3.21 0	
	5.70	0.00	0.10	0.01	0.05	4.00	0.01	5.96	2.13	3.00	0.01	0.00	0.00	2.91	3.30	5.95	1.99	3.01	7.20	0.25	5.55	0.54	7.00	4.30	5.50	2.92 3	
	2 27	0.04	2 96	0.05	0.00	2.05	0.14	5 81	3 00	0.00	0.00	0.00	0.00	3 61	3 04	5 76	2 56	4.70	7 37	0.25	5 28	0.00	8 82	4.72	6.58	3 10 4	
	3 01	0.00	4 92	0.24	0.00	3 31	0.45	6 10	3.05	0.00	0.00	0.00	0.00	4 08	3.45	5 20	2.30	3 36	7 82	0.55	5 83	2 32	7 55	5 72	5 27	3.09 5	
CCLE. A1010	0.01	0.00	0.10	0.00	0.00	0.07	0.11	6.30	3,36	2.60	0.00	0.00	0.01	3.46	4.44	6.47	1.71	5.02	7.52	0.16	5.38	0.01	7.18	4.20	6.46	3.06 6	
CCLE . A172	3,33	0.04	0.08	0.01	0.04	3,10	0.00	5.36	3.24	1.84	0.04	0.00	0.00	2.66	4.88	5.76	2.88	4.96	7.22	0.41	5.64	0.00	7.65	4.12	5.35	2.84 5	
CCLE, A204	2.40	0.00	0.28	0.00	0.00	2.64	0.10	6.11	2.74	0.03	0.00	0.04	0.00	2.71	4.31	5.68	1.51	4.16	6.94	0.28	5.21	3.03	7.55	4.23	5.39	3.41 5	
CCLE.A2058	2.33	0.00	2.22	0.03	0.25	0.37	0.03	6.13	2.68	0.18	0.00	0.01	0.00	5.07	2.92	5.73	1.78	3.58	7.18	0.24	5.43	0.00	7.90	4.61	5.78	3.70 6	
CCLE.A253	1.02	0.01	0.07	1.78	0.38	5.37	0.00	5.67	3.25	0.60	0.97	0.10	0.00	2.78	3.33	5.87	1.96	3.53	7.08	0.46	5.38	0.00	7.32	3.73	5.44	3.43 5	
CCLE.A2780	1.85	2.70	0.59	0.63	0.00	0.79	0.12	6.56	2.77	0.04	0.00	0.00	0.00	3.86	2.98	5.40	1.37	3.37	7.77	0.28	5.06	2.95	8.79	4.81	5.58	3.43 6	
CCLE.A375	2.41	0.01	4.10	0.03	0.32	3.11	0.24	6.62	3.39	0.00	0.01	0.00	0.00	4.72	2.98	5.67	1.86	2.98	7.46	0.14	6.03	2.46	8.51	4.92	6.28	3.93 6	
CCLE.A3KAW	2.21	0.08	0.20	0.00	0.08	0.10	0.00	6.21	3.55	0.04	0.10	0.00	0.00	3.44	0.01	4.97	3.03	2.83	6.87	0.48	4.98	0.07	8.88	4.15	5.57	3.58 5	
CCLE.A427	2.47	0.00	0.15	0.01	0.00	2.71	0.43	6.89	2.50	0.19	0.00	0.00	0.00	3.12	3.92	5.38	1.46	4.61	7.19	0.11	5.10	0.36	7.21	3.88	5.85	2.93 4	
CCLE.A498	0.45	2.42	0.10	0.01	0.00	4.51	0.19	5.40	2.79	2.50	0.01	0.00	0.26	2.65	3.88	5.16	1.83	3.66	7.44	0.28	5.34	1.24	8.31	3.64	5.09	2.87 4	
CCLE.A4FUK	0.25	0.00	0.82	0.00	0.07	0.06	0.00	7.29	3.69	0.00	0.03	0.00	0.10	0.11	0.62	5.07	2.27	2.10	7.66	0.61	5.59	0.18	8.29	5.13	6.26	3.62 6	
CCLE.A549	0.77	0.42	0.01	0.01	0.00	2.53	0.51	6.24	2.70	4.73	0.01	0.00	0.00	3.64	3.89	6.64	1.56	3.42	6.91	0.21	5.63	0.04	8.07	3.30	5.26	3.02 6	
CCLE.A673	2.78	0.00	2.53	3.44	0.19	4.62	0.36	6.98	3.33	0.16	0.11	0.00	1.74	3.54	2.43	5.33	1.23	5.13	7.10	0.19	5.38	0.18	8.60	4.64	4.57	2.58 6	
CCLE.A704	0.44	0.31	0.18	0.01	0.15	3.37	3.24	5.73	3.09	0.15	0.00	0.00	0.00	1.55	3.80	4.79	2.38	5.07	6.02	0.75	3.3/	0.00	4.25	3.25	4.58	2.92 5	
CCLE.ABCI	2 02	0.00	1 20	1.09	00.00	3.74	0.04	5.00	2.74	2.47	0.00	0.00	0.00	5.04 2 10	2.38	5.72	2.30	5.00	6 07	0.08	4.94	1.97	5.11	4.55	5.00	2.36 0	
CCLE. ACCMESUL	0.37	0.01	0.07	0.01	0.05	3 55	1 06	5.01 C 10	2.25	0.04	0.00	0.00	0.00	2.19	4.50	5.50	2 24	2 75	7 20	0.19	4.57	0.00	0 42	3.30	5.20	2.00 J	
	0.57	0.04	0.01	0.04	0.00	0 01	0.00	5 45	3 70	0.04	0.00	0.00	0.00	3.33	4.17	6 24	1 05	4 01	7 40	0.10	6.04	0.00	7 31	5.07	4 63	3.48 6	
	3.18	0.04	0.08	0.00	0.07	0.01	0.04	6.45	1.78	0.03	0.00	0.00	0.00	0.03	0.00	6.20	2.56	4.77	7.24	0.14	5.39	2.18	7.30	5.33	6.01	3.45 6	
CCLE, AM38	2.35	0.00	0.08	0.07	0.08	0.01	0.06	6.64	3.86	4.17	0.00	0.01	0.00	4.01	4.10	5.54	2.13	4.85	7.47	0.12	5.09	0.04	7.89	4.58	6.15	3.35 7	
CCLE, AML193	1.51	0.03	0.16	0.19	0.00	0.16	0.06	5.83	3.26	0.08	0.00	0.06	0.00	0.15	0.20	5.50	0.98	4.50	7.13	0.07	5.37	0.01	6.28	4.77	6.08	2.95 5	
CCLE.AM01	2.36	0.00	0.08	0.00	0.00	0.42	0.00	6.28	3.01	0.03	0.00	0.00	0.00	0.04	1.80	4.90	2.01	3.32	7.59	1.42	5.42	0.14	9.48	4.29	6.29	2.94 7	
CCLE.AN3CA	2.73	0.06	0.12	0.04	0.16	0.14	0.03	6.20	3.25	0.04	0.00	0.00	0.00	0.10	3.25	6.04	2.31	3.78	7.29	0.14	5.39	0.00	7.84	5.48	5.67	3.08 5	
CCLE.ASPC1	0.10	4.54	0.00	0.03	0.07	3.61	0.00	5.74	2.92	4.04	0.03	0.00	0.00	0.20	3.07	5.44	1.85	4.48	7.50	0.08	5.09	0.00	7.85	2.54	3.94	2.81 5	
CCLE.AU565	1.28	0.01	1.88	2.98	0.06	0.88	0.00	6.32	4.35	0.50	0.00	0.00	0.00	2.24	2.47	5.03	1.88	2.74	8.04	0.14	6.06	3.47	6.51	4.36	4.70	3.46 5	
CCLE.BC3C	0.38	0.00	0.11	0.00	0.00	4.67	0.04	6.22	3.24	3.72	0.18	0.00	0.00	2.44	4.05	5.40	2.07	3.93	6.87	0.41	5.75	0.03	8.25	4.36	5.55	2.94 5	
CCLE.BCP1	0.23	0.11	0.06	0.03	0.00	0.04	0.00	6.18	2.58	0.08	0.00	0.00	0.00	0.01	3.18	6.22	1.68	2.54	8.15	1.72	5.42	0.20	8.30	4.62	5.36	3.89 6	
CCLE.BCPAP	3.05	0.03	0.16	0.03	0.00	5.18	0.19	6.41	2.75	2.72	0.01	0.00	0.00	3.61	2.23	5.32	1.74	4.03	7.10	0.07	6.35	0.25	8.70	4.23	5.26	3.79 5	
CCLE.BDCM	1.94	0.00	0.32	0.01	0.00	1.23	0.00	6.12	3.54	0.00	0.00	0.00	0.00	0.14	1.80	5.42	1.97	2.62	7.03	0.32	4.89	0.03	7.70	4.64	6.06	3.65 5	
CCLE.BEN	0.04	3.62	0.19	0.03	0.08	2.08	0.03	5.82	4.80	0.61	0.10	0.00	0.00	2.91	3.13	5.60	1.11	3.90	7.28	0.10	5.16	0.21	8.57	3.75	4.40	3.10 5	
CCLE.BFTC905	0.86	0.00	0.06	1.41	0.08	4.94	0.00	6.09	3.34	3.55	0.16	0.04	0.00	3.17	2.58	5.97	1.64	2.92	6.00	0.71	5.28	0.14	8.44	4.26	5.32	3.94 5	
CCLE.BFTC909	2.20	0.00	0.11	0.03	0.07	3.03	0.41	0.25	3.43	3.62	0.00	0.00	0.00	2.08	3.41	5.44	1.05	4.70	0.90	1 44	4.8/	0.10	8.70	3.87	5.43	2.79 3	
CCLE.BHT101	1 36	4.59	0.08	3 52	0.03	4 37	0.91	5.69	3 61	3 91	0 19	0.00	0.00	2 32	3 47	5 68	2 59	5 16	6 51	1 66	5 21	0.00	7 66	4 62	4 99	3.69 5	
CCLE.BTCR16	0.98	0.01	0.08	5.12	0.00	4.27	0.00	5.05	3.43	0.08	0.00	0.00	0.00	1.70	3.33	5.41	1.95	4.53	6.23	0.52	4.75	0.08	8.55	3.37	4.14	3.17 4	
CCLE.BICR18	0.51	0.08	0.08	5.47	0.00	6.60	0.06	5.67	3.11	0.80	0.52	0.03	0.00	2.65	2.49	6.93	1.76	3.97	7.00	0.66	4.85	0.63	8.47	4.73	5.51	3.52 4	
CCLE.BICR22	1.38	0.01	0.12	7.36	0.00	4.29	0.01	3.87	3.10	0.03	0.01	0.00	0.00	0.98	3.02	4.88	1.51	2.49	6.21	0.97	3.96	0.04	7.25	2.63	3.04	2.92 3	
CCLE.BICR31	2.69	0.06	0.19	4.48	0.12	6.01	0.01	5.92	3.58	1.04	0.04	0.00	0.00	1.10	3.71	6.00	1.99	5.13	7.46	0.32	5.68	1.14	8.17	3.92	5.26	3.41 4	
CCLE.BICR56	0.60	0.01	0.07	4.72	0.00	4.61	0.01	3.75	2.52	0.14	0.01	0.00	0.00	0.34	1.95	4.89	2.05	3.70	6.44	0.45	4.04	0.10	7.62	2.90	3.07	2.72 4	
CCLE.BICR6	0.03	0.01	0.10	6.10	0.00	4.28	0.00	4.27	1.66	0.07	0.00	0.00	0.00	0.86	3.18	4.67	0.97	2.45	5.98	0.30	4.18	0.11	6.60	2.16	3.70	2.21 3	
CCLE.BL41	1.79	0.04	0.07	0.08	0.00	2.34	0.00	6.82	2.68	0.03	0.00	0.00	0.00	0.04	0.11	6.30	0.24	2.58	6.94	1.58	5.29	0.06	8.07	4.51	6.37	2.17 5	
CCLE.BL70	2.12	0.01	0.10	0.03	0.00	1.37	0.00	5.54	3.19	0.00	0.00	0.00	0.00	0.03	0.12	5.47	0.18	3.15	7.14	0.46	5.15	0.24	7.89	4.61	5.79	3.37 5	1
CCLE.BT-12	1.60	0.00	0.08	0.00	0.00	2.72	0.15	6.34	1.84	4.52	0.16	0.00	0.00	0.04	2.90	5.54	0.96	2.97	7.31	0.63	4.94	0.00	7.59	4.03	5.71	3.19 6	
combined rnase	a data																										4 11

Encode numeric columns

- Log transformation: log (1+x)
- Standard scalar: z score
- Rank => Gaussian
- Discretization
- Mark missing values

One Hot Encoding of Categories

State	Binary	One-Hot	Hamming 2	Hamming 3		
SO	000	00000001	0000	000000		
51	001	00000010	0011	000111		
52	010	00000100	0101	011001		
\$3	011	00001000	0110	011110		
54	100	00010000	1001	101010		
\$5	101	00100000	1010	101101		
\$6	110	01000000	1100	110011		
57	S7 111		1111	110100		
L				1		

Open Source Framework Comparison

	Languages	Tutorials and training materials	CNN modeling capability	RNN modeling capability	Architecture: easy-to-use and modular front end	Speed	Multiple GPU support	Keras compatible
Theano	Python, C++	++	++	++	+ +		+	+
Tensor- Flow	Python	+++	+++	++	+++	++	++	+
Torch	Lua, Python (new)	+	+++	+++ ++		+++	++	
Caffe	C++	+	++		+	+	+	
MXNet	R, Python, Julia, Scala	++	++	+	++	++	+++	+
Neon	Python	+	++	+	+	++	+	
СМТК	C++ +		+	++++	+	++	+	+

Keras

- <u>https://keras.io/</u>
- Minimalist, highly modular neural networks library
- Written in Python
- Capable of running on top of either TensorFlow/Theano and CNTK
- Developed with a focus on enabling fast experimentation


```
from keras.layers import Input, Dense
from keras.models import Model
```

```
input_layer = Input(shape=(1000,))
fc_1 = Dense(512, activation='relu')(input_layer)
fc_2 = Dense(256, activation='relu')(fc_1)
output_layer = Dense(10, activation='softmax')(fc_2)
```

```
model.fit(bow, newsgroups.target)
predictions = model.predict(features).argmax(axis=1)
```

DNN hyperparameter examples

- Data preprocess
 - Positive features: logarithmic transformation y = log(1+x)
 - Mixed features: standard scaler
- Number of hidden layers: 4
- Number of neurons in hidden layers: 4000-2000-1000-1000
- Activation function: ReLU
- Dropouts: Input: 0%; layers 1,2,3: 25%; layer 4: 10%
- Initialization: no unsupervised pretraining
- Optimization: learning rate = 0.05, momentum = 0.9, and weight decay = 0.0001
- Training epochs: as large as possible (dropout can prevent overfitting)

Cancer Type Classification

4320/4320 [] ·	- 87s	- loss	: 3.2885	- acc:	0.0537 -	<pre>val_loss:</pre>	2.9542 -	val_acc:	0.0556
Epoch 2/400										
4320/4320 []	- 76s	- loss	: 2.9777	- acc:	0.0752 -	val_loss:	2.8273 -	val_acc:	0.1083
Epoch 3/400										
4320/4320 []	- 78s	- loss	: 2.8117	' - acc:	0.1176 -	val_loss:	2.5971 -	val_acc:	0.2194
Epoch 4/400										
4320/4320 []	- 77s	- loss	: 2.5094	- acc:	0.2060 -	<pre>val_loss:</pre>	2.1191 -	val_acc:	0.3306
Epoch 5/400										
4320/4320 []	- 78s	- loss	: 2.0385	- acc:	0.3442 -	<pre>val_loss:</pre>	1.6411 -	val_acc:	0.4648
Epoch 6/400										
4320/4320 []	- 75s	- loss	: 1.4995	- acc:	0.5079 -	<pre>val_loss:</pre>	0.9846 -	val_acc:	0.7704
Epoch 7/400										
4320/4320]	- 77s	- loss	: 1.0688	- acc:	0.6481 -	<pre>val_loss:</pre>	0.5628 -	val_acc:	0.8796
Epoch 8/400										
4320/4320 []	- 76s	- loss	: 0.7657	' - acc:	0.7461 -	<pre>val_loss:</pre>	0.4952 -	val_acc:	0.8509
Epoch 9/400										
4320/4320 []	- 76s	- loss	: 0.5729	- acc:	0.8123 -	<pre>val_loss:</pre>	0.2803 -	val_acc:	0.9287
Epoch 10/40	0									
4320/4320 []	- 79s	- loss	: 0.4389	- acc:	0.8620 -	val_loss:	0.1962 -	val_acc:	0.9398

VAE Latent Representation of GDC Expression

How did we know it might work?

- Build autoencoders first with the features you are going to work with
- If you get reasonable accuracy then the model can learn a representation and that is a good sign
- Class balance seems to matter
- Number of training examples matters > 1000 is good > 10,000 better, > 100,000 much better
- Hyper parameter search is also important once you get something that basically works

Generate Compact Molecular Signatures

- For each agent or class of agents we will apply feature selection methods to the models to generate where possible a compact molecular signature that retains prediction performance
 - Typical reduced signatures include O(10)-O(100) features from >> 50,000 starting features
 - Features may be genes, SNPs, μRNA etc.

Developed and applied multiple feature selection methods

• Selection criterion: Chi2, Anova, mutual info, ensemble ML, deep neural networks

Analyze Molecular Signatures to Provide Insight to Potential Mechanisms

- Started mapping gene features to pathways
 - Enrichment analysis will be applied to the signatures to identify associated pathways
 - Pathways will be identified that associate with both sensitive and resistant response phenotypes
- Identified co-located or known interacting pairs of gene and microRNA signatures
 - Top miRNA feature hsa.mir.10a is colocated with ENSG00000120075.5
 - It has also been experimentally verified that this miRNA downregulates the corresponding HOX genes

Rank	MIR	RNA	MIR&RNA
1	hsa.mir.10a	ENSG00000119888.9	ENSG00000119888.9
2	hsa.mir.205	ENSG00000170370.11	ENSG00000170370.11
3	hsa.mir.181a.2	ENSG00000157551.16	ENSG00000157551.16
4	hsa.mir.135a.1	ENSG00000124664.9	ENSG00000124664.9
5	hsa.mir.203a	ENSG00000102554.12	ENSG00000102554.12
6	hsa.mir.196b	ENSG0000009765.13	hsa.mir.10a
7	hsa.mir.194.1	ENSG00000275410.3	ENSG0000009765.13
8	hsa.mir.9.3	ENSG00000274173.1	ENSG00000275410.3
9	hsa.mir.196a.2	ENSG00000120075.5	ENSG00000274173.1
10	hsa.mir.429	ENSG00000124466.8	hsa.mir.205
11	hsa.mir.375	ENSG00000204385.9	ENSG00000204385.9
12	hsa.mir.584	ENSG00000103449.10	ENSG00000104447.10
13	hsa.mir.135b	ENSG00000104447.10	ENSG00000103449.10
14	hsa.mir.10b	ENSG00000255794.5	ENSG0000078399.14
15	hsa.let.7i	ENSG00000189334.7	ENSG00000189334.7
16	hsa.mir.125b.2	ENSG00000165215.6	ENSG00000165215.6
17	hsa.mir.30a	ENSG00000137203.9	ENSG00000137203.9
18	hsa.mir.200c	ENSG00000078399.14	ENSG00000255794.5
19	hsa.mir.203b	ENSG00000103942.11	ENSG00000103942.11
20	hsa.mir.944	ENSG00000046653.13	ENSG0000046653.13
21	hsa.mir.1301	ENSG00000151322.17	ENSG00000151322.17
22	hsa.mir.138.1	ENSG00000123892.10	ENSG00000123892.10

Close examination of prediction error

- Confusion matrix
- Local feature importance
- Force plots

RNAseq Bias Removal

Alex Partin

Cancer Type Classification with SNPs

GDC: 10K samples with 10M mutations

N	IIH NATIONAL CANCER INSTITUTE GDC Data Portal	A Home	n Projects 🚯 Expl	oration 🔄 🔅 Ana	alysis 🛢 Rep	pository	(Q Qui	ck Se	arch	Mana	ge Sets	⇒] [.ogin	📜 Cart 🚺	GD GD	C Apps
	✓VEP Impact		Cases (37,075)	Genes (22,8	872) Muta	ations (3,14	2,246)	C)nco(Grid							
		2,304,599	Primary Site		Project		Dise	ease T	ype			Gen	der		Vita	al Status	
	MODERATE	1,666,904															
	□ LOW	714,906															
	HIGH	292,356															
	~SIFT Impact																
	deleterious	851,323	Showing 1 - 20 of 3	37,075 cases		≡	ļĒ	🕹 E	Biospe	ecimen	*	Clinical	JSO	N	TSV Save	/Edit Case	Set
	tolerated	677,244							Available File						# Mutations # Ganas Slides		
	deleterious_low_confidence	137,952	Case ID	Project	Primary Site	Gender	Files	Seq I	Ξхр	SNV C	NV M	eth Cli	nical E	Bio	# Mutations	# Genes	Slides
	tolerated_low_confidence	102,495	<u>TCGA-A5-A0G2</u>	TCGA-UCEC	Corpus uteri	Female	<u>58</u>	<u>4</u>	<u>5</u>	<u>16</u>	<u>5</u>	1	<u>10</u>	<u>17</u>	<u>42,051</u>	<u>14,357</u>	b (3)
			TCGA-EO-A22U	TCGA-UCEC	Corpus uteri	Female	<u>57</u>	<u>4</u>	<u>5</u>	<u>16</u>	<u>5</u>	<u>1</u>	<u>10</u>	<u>16</u>	<u>26,998</u>	<u>12,629</u>	上 (2)
	~ Polyphen Impact		TCGA-FI-A2D5	TCGA-UCEC	Corpus uteri	Female	<u>58</u>	<u>4</u>	<u>5</u>	<u>16</u>	<u>5</u>	<u>1</u>	<u>11</u>	<u>16</u>	<u>26,139</u>	<u>12,482</u>	上 (2)
		806.244	TCGA-AX-A2HC	TCGA-UCEC	Corpus uteri	Female	<u>65</u>	<u>6</u>	<u>10</u>	<u>16</u>	<u>5</u>	2	<u>10</u>	<u>16</u>	<u>24,853</u>	<u>12,205</u>	b (2)
			TCGA-EO-A22R	TCGA-UCEC	Corpus uteri	Female	<u>59</u>	<u>4</u>	<u>5</u>	<u>16</u>	<u>5</u>	<u>2</u>	<u>10</u>	<u>17</u>	<u>24,276</u>	<u>11,920</u>	b (3)
	probably_damaging	675,545	TCGA-B5-A3FC	TCGA-UCEC	Corpus uteri	Female	<u>57</u>	<u>4</u>	<u>5</u>	<u>16</u>	<u>5</u>	<u>1</u>	<u>10</u>	<u>16</u>	<u>24,584</u>	<u>11,902</u>	上 (2)
	possibly_damaging	464,623	□ <u>TCGA-IB-7651</u>	TCGA-PAAD	Pancreas	Female	<u>56</u>	<u>4</u>	<u>5</u>	<u>16</u>	<u>5</u>	1	<u>8</u>	<u>17</u>	<u>23,084</u>	<u>11,453</u>	b (3)
	unknown	101,253	TCGA-AP-A1DV	TCGA-UCEC	Corpus uteri	Female	<u>55</u>	<u>4</u>	<u>5</u>	<u>16</u>	<u>3</u>	1	<u>10</u>	<u>16</u>	<u>22,664</u>	<u>11,431</u>	b (2)
			TCGA-E6-A1LX	TCGA-UCEC	Corpus uteri	Female	<u>57</u>	<u>4</u>	<u>5</u>	<u>16</u>	<u>5</u>	<u>1</u>	<u>10</u>	<u>16</u>	<u>23,542</u>	<u>11,397</u>	上 (2)
	~ Consequence Type	Q	TCGA-AP-A0LM	TCGA-UCEC	Corpus uteri	Female	<u>58</u>	<u>4</u>	<u>5</u>	<u>16</u>	<u>5</u>	<u>1</u>	<u>10</u>	<u>17</u>	<u>22,507</u>	<u>11,301</u>	b (3)
	missense_variant	1,648,416	TCGA-2W-A8YY	TCGA-CESC	Cervix uteri	Female	<u>56</u>	<u>4</u>	<u>5</u>	<u>16</u>	<u>5</u>	<u>1</u>	<u>9</u>	<u>16</u>	<u>21,749</u>	<u>11,177</u>	b (2)
		1.119.774	TCGA-AX-A1CE	TCGA-UCEC	Corpus uteri	Female	<u>58</u>	<u>4</u>	<u>5</u>	<u>16</u>	<u>5</u>	<u>1</u>	<u>10</u>	17	<u>21,720</u>	<u>11,153</u>	上 (3)
			TCGA-AP-A1DK	TCGA-UCEC	Corpus uteri	Female	<u>57</u>	<u>4</u>	<u>5</u>	<u>16</u>	<u>5</u>	1	<u>10</u>	<u>16</u>	<u>20,472</u>	<u>11,059</u>	b (2)
	downstream_gene_variant	1,069,273	TCGA-A5-A1OF	TCGA-UCEC	Corpus uteri	Female	<u>57</u>	<u>4</u>	<u>5</u>	<u>16</u>	<u>5</u>	1	<u>10</u>	<u>16</u>	<u>20,080</u>	<u>10,990</u>	b (2)

How to deal with n >> p ?

- Dropout
- Regularization
- Locally connected networks

Diet Networks: Thin Parameters for Fat Genomics

Adriana Romero, Pierre Luc Carrier, Akram Erraqabi, Tristan Sylvain, Alex Auvolat, Etienne Dejoie, Marc-André Legault, Marie-Pierre Dubé, Julie G. Hussin, Yoshua Bengio

Diet Network

• Suppose we have

- 1000 samples
- 1,000,000 features
- 100 neurons in the hidden layer

• Parameters in first layer = 100M

How do we represent the sparse mutations?

- Gene level / pathway level
- Weighting by impact
- Filtering by significance
- Convert to images
 - Variant calling
 - Annotation

MutSigCV

Deep annotation with compare region images

Identification of genomic islands and operons

Table 3. Quality of tools predictions: % predictions made with GI features | % predictions missed with GI features, over the testing genomes dataset.

Target Predictor	ShutterIsland	IslandViewer	AlienHunter	IslandPick	SIGI	Average
ShutterIsland	N/A	91% 64%	87% 47%	89% 31%	87% 36%	89% 45%
IslandViewer	94% 67%	N/A	89% 45%	80% n/a	87% n/a	88% 56%
AlienHunter	74% 70%	66% 60%	N/A	73% 21%	71% 42%	71% 48%
IslandPick	69% 76%	34% 86%	49% 53%	N/A	54% 44%	52% 65%
SIGI	67% 75%	45% 77%	48% 51%	50% 35%	N/A	53% 60%
Dimob	n/a 66%	n/a 28%	n/a 43%	n/a 25%	n/a 23%	n/a 37%
Phispy	n/a 68%	n/a 70%	n/a 50%	n/a 33%	n/a 39%	n/a 52%
PhageFinder	n/a 68%	n/a 70%	n/a 50%	n/a 34%	n/a 39%	n/a 52%
Islander	n/a 75%	n/a 71%	n/a 51%	n/a 33%	n/a 39%	n/a 54%
Phaster	n/a 75%	n/a 71%	n/a 51%	n/a 33%	n/a 39%	n/a 54%

Assaf et al. 2019

Gene sets from MSigDB

22,596 gene sets

Gene2vec

Sample2image

Alena Harley, The Mystery of the Origin

78% accuracy

Alena Harley, The Mystery of the Origin

Drug Response Prediction

Modeling Drug Response

Drug (s) descriptors fingerprints structures SMILES dose

 $\mathcal{R} = f(\mathcal{T}, \overset{*}{\mathcal{D}}_1, \mathcal{D}_2)$

IC50 GI50 % growth Z-score AUC **Response**

gene expression levels SNPs protein abundance microRNA methylation **Tumor**

Cell Line Features

- NCI-60: 60 cell lines
- Molecular Assays: 20
 - Gene expression array
 - RNA-seq
 - Mutations
 - Protein abundance
 - microRNA

Figure adapted from Kundaje et al. Nature 2015
Drug Features

- SMILES strings
- 2D or 3D structures
- Graph convolutions
- Descriptors
- Fingerprints

N1CCN(CC1)C(C(F)=C2)=CC(=C2C4=O)N(C3CC3)C=C4C(=O)O

Deep Learning Model for Drug Pair Response

Fig. 2. Neural network architecture. The orange square boxes, from bottom to top, represent input features, encoded features, and output growth values. Feature models are denoted by round shaded boxes: green for molecular features and blue for drug features. There are multiple types of molecular features that are fed into submodels for gene expression, proteome, and microRNA. The descriptors for the two drugs share the same descriptor model. All encoded features are then concatenated to form input for the top fully connected layers. Most connecting layers are linked by optional residual skip connections if their dimensions match.

Uno: Predicting Single/Paired Drug Response

Organoid cultures for the analysis of cancer phenotypes, Sachs and Clevers, 2014

Pilot 1

Data in place for model training and testing

Table 1. Integrating cell line, PDX, and real tumor samples across multiple studies						
Dose Independent	Data Source	# Tumor Samples	# Drugs	# Dose Response Samples	Treatment Type	
	NCI-ALMANAC	60	104	3,686,475	Drug pair	
11,671	CCLE	504	24	93,251	Single drug	
395,264	CTRPv2	887	544	6,171,005	Single drug	
6,456	gCSI	409	16	58,094	Single drug	
225,481	GDSC	1,075	249	1,894,212	Single drug	
3,780,150 (60.000)	NCI	60	52,671	18,862,308	Single drug	
(,,	GDC	11,081	N/A	N/A	N/A	
	NCI-PDM	1,198	12	518*	Single and paired drugs	

* PDM drug response were measured differently from cell line dose response data.

Patient Derived Xenograft Models

Pilot 1

Cancer Cell Lines

CL and PD Xenografts

ZFZJ2-1, 146476-266-R, Urothelial/bladder

AZD8055 ~2.2x delay. No regression

754354
628503
764036
758871
125973

ZFZJ2-1, 146476-266-R, Urothelial/bladder ca

Op Meeting:

CANDLE prediction analysis notebook

Perceptual distance vs data distance

- Metric learning
- Representation learning
- Feature encoding
- Embedding
- WordVec, ProteinVec

Siamese network

Focusing on the difficult parts

• Mine the difficult samples

Figure 2. Model structure. Our network consists of a batch input layer and a deep CNN followed by L_2 normalization, which results in the face embedding. This is followed by the triplet loss during training.

Figure 3. The **Triplet Loss** minimizes the distance between an *an-chor* and a *positive*, both of which have the same identity, and maximizes the distance between the *anchor* and a *negative* of a different identity.

Change loss function

Focal Loss for Dense Object Detection

Tsung-Yi Lin Priya Goyal Ross Girshick Kaiming He Piotr Dollár Facebook AI Research (FAIR)

DL Challenge:

from surface pattern recognition to deep mechanistic understanding

Just fancy regression?

Sequence to sequence models

Function approximation

=> 88

Discovering physical concepts with neural networks

Raban Iten, Tony Metger, Henrik Wilming, Lidia del Rio, Renato Renner

(Submitted on 26 Jul 2018 (v1), last revised 29 Sep 2018 (this version, v2))

We introduce a neural network architecture that models the physical reasoning process and that can be used to extract simple physical concepts from experimental data without being provided with additional prior knowledge. We apply the neural network to a variety of simple physical examples in classical and quantum mechanics, like damped pendulums, two-particle collisions, and qubits. The network finds the physically relevant parameters, exploits conservation laws to make predictions, and can be used to gain conceptual insights. For example, given a time series of the positions of the Sun and Mars as observed from Earth, the network discovers the heliocentric model of the solar system – that is, it encodes the data into the angles of the two planets as seen from the Sun. Our work provides a first step towards answering the question whether the traditional ways by which physicists model nature naturally arise from the experimental data without any mathematical and physical pre-knowledge, or if there are alternative elegant formalisms, which may solve some of the fundamental conceptual problems in modern physics, such as the measurement problem in quantum mechanics.

CAUSALITY

MODELS, REASONING, AND INFERENCE

JUDEA PEARL

Thank you