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Jeremy Howard @jeremyphoward - 22h
Seems like there is a real revolution going on in protein analysis thanks to deep
learning language models. Here's an example that just got published
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Representation learning
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* 4" possible sequences
* Real sequences occupy a tiny fraction of all possible sequences
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Embedding for categorical variables
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From the Instacart blog post 'Deep Learning with Emojis (not Math)'



Normal => Tumor
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BIOLOGICAL STRUCTURE AND FUNCTION EMERGE FROM SCALING
UNSUPERVISED LEARNING TO 250 MILLION PROTEIN SEQUENCES

Alexander Rives **  Siddharth Goyal *® Joshua Meier ** Demi Guo *?
Myle Ott ¢ C.Lawrence Zitnick ° Jerry Ma 3 Rob Fergus 7*3

In the field of artificial intelligence, a combination of scale in data and model capacity enabled by
unsupervised learning has led to major advances in representation learning and statistical generation. In
biology, the anticipated growth of sequencing promises unprecedented data on natural sequence diversity.
Learning the natural distribution of evolutionary protein sequence variation is a logical step toward
predictive and generative modeling for biology. To this end we use unsupervised learning to train a deep
contextual language model on 86 billion amino acids across 250 million sequences spanning evolutionary
diversity. The resulting model maps raw sequences to representations of biological properties without
labels or prior domain knowledge. The learned representation space organizes sequences at multiple levels
of biological granularity from the biochemical to proteomic levels. Learning recovers information about
protein structure: secondary structure and residue-residue contacts can be extracted by linear projections
from learned representations. With small amounts of labeled data, the ability to identify tertiary contacts
is further improved. Learning on full sequence diversity rather than individual protein families increases
recoverable information about secondary structure. We show the networks generalize by adapting them
to variant activity prediction from sequences only, with results that are comparable to a state-of-the-art
variant predictor that uses evolutionary and structurally derived features.

TCorrespondence to <arives@cs.nyu.edu>, <maj@fb.com>, and <robfergus@fb.com>
*Dept. of Computer Science, New York University, USA
SFacebook Al Research, USA
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What is Machine Learning?

The complexity in traditional computer programming
is in the code (programs that people write). In
machine learning, algorithms (programs) are in
principle simple and the complexity (structure) is in
the data. Is there a way that we can automatically
learn that structure? That is what is at the heart of
machine learning.

-- Andrew Ng

That is, machine learning is the about the construction and study
of systems that can learn from data. This is very different than
traditional computer programming.




The Cartoon Form

Traditional Programming
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Examples in applying ML to NGS data

* Classifying cancer type with gene expression profiles
* Removing study bias in tumor gene expression profiles
* Classifying cancer type with SNP data

* Drug response prediction - introduction



Four Typical Problems

classification scikit-learn
- algorithm cheat-sheet
data NO

YES samples

NOT
WORKING

NOT
WORKING

regression

few features
should be
important

number of
categories
known

'WORKING
NoT
'WORKING
dimensionality
reduction




Deep learning in biology and medicine

https://qithub.com/qreenelab/deep-review



https://github.com/greenelab/deep-review

Keras.|s

Tensorflow playground



https://playground.tensorflow.org/
https://transcranial.github.io/keras-js/
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Which dataset
do you want to
use?

©

Ratio of training
to test

data: 50%
— e

Noise: 0

Batch size: 10
—

REGENERATE

Epoch Learning rate Activation Regularization Regularization rate Problem type
0001564 0.03 v Tanh v None v 0 v Classification ~
FEATURES + — 5 HIDDEN LAYERS OUTPUT
Which Test loss 0.223
properties do Training loss 0.154
you want to » S D © A A +
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X, ‘ -
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!

The outputs are
mixed with varying
weights, shown
by the thickness
of the lines.

Colors shows _
data, neuron and : !

This is the output 1
from one neuron.
Hover to see it
larger.

weight values. 0

[0 showtestdata [J Discretize output



A few “good” runs

OUTPUT OUTPUT OUTPUT

Test loss 0.003 Test loss 0.006 Test loss 0.004
Training loss 0.004 Training loss 0.000 Training loss 0.001




Deep Learning Basics
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Mathematical Model of a Neuron
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Loss and Accuracy

Regression problem

y_true: [ -50, -10, +80]
y pred: [ -30, +10, +60]

MSE = 0.04

y_true: [ -50, -10, +80]
y pred: [ -50, -10, +45]

MSE = 0.04

Classification view
[1,1,0]

[1,0,1]

ACC =0.67

[1,1,0]
ACC =1.00



Classification loss

e Softmax

* Cross entropy ot
scores —_— probabilities
0.059
p@- e’ 0.012
b@- i €% 0.797
0.132

How different are the two
probability distributions?

true
probabilities cross entropy

0.1
0.2

0.866
0.6

0.1

H(p,q) = — Y p(z) logq(z)
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d Compare outputs with correct
answer to get error derivatives
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Human Vision System
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Increasing Depth Works...

28.2

152 layers

\ 16.4

\ 11.7
\ 22 layers ‘ 19 Iayers

3.57 I ~ I 8 layers 8 layers

ILSVRC'15 ILSVRC'14  ILSVRC'14 ILSVRC'13  ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

shallow

ImageNet Classification top-5 error (%)
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Example CNNs Structures from
ILSVRC Winners

AlexNet, 8 layers
(ILSVRC 2012)

@

[~ ]
=
VGG, 19 layers GoogleNet, 22 layers sseaemes
apesyes
(ILSVRC 2014) (ILSVRC 2014) =
e
B B = i
=
== w
=58 R R R
=
B8 R B2 B2
pases
=]
mmm
EREAE a
. @
B33 B B3 B B
= e
==
woe
o
[==]
meme
-
=
B3
-
"
—fc,4096 :
= ]

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.
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Deep Residual Learning

* F(x) is a residual mapping w.r.t. identity

X
vveigh"; jayer . Ifidentitywerg optimal,
easy to set weightsas 0
F(x) J relu identity
weight layer X * If optimal mapping is closer to identity,
easier to find small fluctuations

Hx)=F(x)+x



Deep Residual Learning

Network “Design” plain net
* Keep it simple

* Our basic design (vGG-style)
* all 3x3 conv (aimost)
* spatial size /2 =># filters X2 (~same complexity per layer)
* Simple design; just deep!

* Other remarks:
* no hidden fc

* nodropout

30



Dropout

SRIVASTAVA, HINTON, KRIZHEVSKY, SUTSKEVER AND SALAKHUTDINOV
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(a) Standard Neural Net (b) After applying dropout.

Figure 1: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right:
An example of a thinned net produced by applying dropout to the network on the left.
Crossed units have been dropped.



Andres Torrubia @antor - Oct 18
Replying to @radekosmulski
Sometimes it feels like

QUESTION 8/10

As demonstrated in research, what is the trick that enables training a 10_000
layer deep neural network?

dropout
batchnorm
initialization

© thoughts and prayers

Q 2 1 17 Q 12



Essential Deep Learning Resources

Books
* Michael Nielsen’s free online book on deep learning
* Deep Learning textbook (Goodfellow et al, 2016)
* Deep Learning with Python (Keras book)

Online courses
* FastAl
* Stanford CS231n
* Andrew Ng

Python
* Python Cookbook, 3™ Edition

Other resources

PyTorch tutorials

Kaggle kernels / discussions; No free hunch interviews
Twitter

arxiv-sanity M annine

Francois Chollet

33



Improving Models with Domain Knowledge

Books
* Michael Nielsen’s free online book on deep learning
* Deep Learning textbook (Goodfellow et al, 2016)
* Deep Learning with Python (Keras book)

Online courses
* FastAl
* Stanford CS231n
* Andrew Ng

Python
* Python Cookbook, 3™ Edition

Other resources
* PyTorch tutorials
» Kaggle kernels / discussions; No free hunch interviews
* Twitter
* arxiv-sanity

About 10,000 deep learning papers
have been written about "hard-coding
priors about a specific task into a NN
architecture works better than a lack
of prior" -- but they're typically being
passed as "architecture XYZ offers
superior performance for [overly
generic task category]"

749 Likes 168 Retweets

Jun1, 2019 at 5:19 PM via Twitter Web Client

9 1 e ¢t 9 ©

Francois Chollet @fchollet ‘@ 36d
You can always "buy"
performance by either training on
more data, better data, or by
injecting task information into the
architecture or the
preprocessing. However, this isn't
informative about the
generalization power of the
techniques used (which is the
only thing that matters)

4
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Cancer Type Classification
with RNAseq



A Home

j m NATIONAL CANCER INSTITUTE
GDC Data Portal

Harmonized Cancer Datasets

Genomic Data Commons Data Portal

1,000
8 e

Get Started by Exploring:

Projects

Perform Advanced Search Queries, such as:

Cases of kidney cancer diagnosed at the age of 20 and

below
CNV data of female brain cancer cases

Gene expression quantification data in TCGA-GBM

project

DATA PORTAL SUMMARY

Data Release 6.0 - May 9, 2017

| Infrastructure

Data is continuously being processed and harmonized by
the GDC.
View GDC system statistics:

Compute Infrastructure 12,800 Cores 87.96 TB RAM

4.98 PB Used 5.42 PB Total

Storage Infrastructure

Projects

736 Cases

PROJECTS

39

%® pata Ll Analysis

1,519 Files

& 29

Documentation

Learn how to use the GDC Data Portal to its full potential
with common topics such as:

Browse Data using Facet Search

Search Data with Advanced Search Technology
Project Based Data Availability

Controlled Access Data

Visit the Documentation Website »

& 14,551

Q Quick Search ~ #) Login

Cases by Primary Site

AL LSO DD P A R R I SRR R I SRR ING SN
P e F @ P EF T e S S T O F

459 Cases 1,788 Files & \;:a\ < "5 N zf’(\b RS ‘JE&}%&’\(\%@ Qé‘@oé“ R < é‘éé\

O N O

& S <f )
& NS Aal
166 Cases 522 Files
PRIMARY SITE CASES FILES

(9 274,724

GDC Applications

The GDC Data Portal is a robust data-driven platform that
allows cancer researchers and bioinformaticians to search
and download cancer data for analysis. The GDC
applications include:

>

Data Portal Website Data Transfer Tool API

== Bi

Data Submission Portal Documentation Legacy Archive GDC cBio Portal




Cases by Primary Site

|
|
1
|




Total RNA
Oligo dT enrichment
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Gene Expression Quantification
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BAM
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Quality Filtering

Samtools

Upper Quartile
Normalization
custom scripts

Fragment Count

HT-Seq

[ ]

/Gene Count/é—->

Count
Normalization
custom scripts

RPKM (reads per kilobase per
million mapped reads)
Upper Quantile (UQ)

ilation normalizes read count by dividing it by

Calculati
RC, * 10° . . RC, % 10°
FPKM = —* FPKM —-UQ = =
RC,.* L RCyrs + L
* RC,
* RC, nthe Pl

+ L: Length of the

Note: The read count is multplied by a scalar (10°) during normalization to account for the kilobase and ‘million mapped reads'

units.



Each Sample has > 60,000 columns
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Encode numeric columns
 Log transformation: log (1+x)

* Standard scalar: z score

* Rank => Gaussian

* Discretization

* Mark missing values



One Hot Encoding of Categories

State Binary One-Hot Hamming 2 Hamming 3
SO 000 00000001 0000 000000
S1 001 00000010 0011 000111
S2 010 00000100 0101 011001
S3 011 00001000 0110 011110
S4 100 00010000 1001 101010
S5 101 00100000 1010 101101
S6 110 01000000 1100 110011
S7 111 10000000 1111 110100




Open Source Framework Comparison

) Architecture:
Tutorials CNN RNN
Languages | andtainingll modeling okl eas&t;-j:?:rand Speed Multiple GPU corf\eratisbl
materials capability capability front end e
Theano Fython, e . *

C++

Tensor-
Flow

Lua, Python
(new)

C++

R, Python,

MXNet Julia, Scala

++




Keras

* https://keras.io/

* Minimalist, highly modular neural
networks library

* Written in Python

* Capable of running on top of either
TensorFlow/Theano and CNTK

* Developed with a focus on enabling
fast experimentation




from keras.layers import Input, Dense

from keras.models import Model

input_layer = Input(shape=(1000,))
fc_1 = Dense(512, activation='relu')(input_layer)
fc_2 = Dense(256, activation='relu')(fc_1)

output_layer = Dense(10, activation='softmax')(fc_2)

model = Model(input=input_layer, output=output_layer)
model.compile(optimizer="rmsprop’,
loss='categorical_crossentropy’,

metrics=["'accuracy'])

model. fit(bow, newsgroups.target)

predictions = model.predict(features).argmax(axis=1)



DNN hyperparameter examples

Data preprocess

* Positive features: logarithmic transformation y = log(1+x)
* Mixed features: standard scaler

Number of hidden layers: 4

Number of neurons in hidden layers: 4000-2000-1000-1000
Activation function: RelLU

Dropouts: Input: 0%; layers 1,2,3: 25%; layer 4: 10%
Initialization: no unsupervised pretraining

d Optl MIZAtioN: learning rate = 0.05, momentum = 0.9, and weight decay = 0.0001

* Training epochs: as large as possible (dropout can prevent overfitting)



Code Examples



https://github.com/ECP-CANDLE/Benchmarks/blob/master/Pilot1/TC1/tc1_baseline_keras2.py

Cancer Type Classification

4320/4320 [==—=————————rr—erre e ; : val_loss: val_acc
ig38245230?============================== . . val_loss: val_acc:
ig3324gQ;O?============================== s s val_loss: val_acc
ig;;24gg;0%============================== : : val_loss: val_acc
ig;;24gg;0g============================== s s val_loss: val_acc
P val_loss val_acc

val_loss val_acc
Epoch 8/400
4320/4320 [==========—===—===——c=—=ccc—ox : - val_loss val_acc
Epoch 9/400
4320/4320 [ e s s val_loss val_acc
Epoch 10/400
4320/4320 [==================—=c=—=ccuc=x] : - val_loss: val_acc




Model Loss

— train
test
3.0 - \
2.5 1 Cancer Type Classification
18 types each with ~300 RNAseq profiles
2.0 -
1.5 -
1.0 -
0.5 - \
0.0 - -
0 50 100 150 200 250 300 350 400

epoch
https://github.com/ECP-CANDLE/Benchmarks/tree/frameworks/Pilot1/TC1



Model Accuracy

1.09 —— train
test

0.8 -
Cancer Type Classification

18 types each with ~300 RNAseq profiles

o
(e)}
1

accuracy

o
B
1

0.2 A

0 50 100 150 200 250 300 350 400
epoch

https://github.com/ECP-CANDLE/Benchmarks/tree/frameworks/Pilot1/TC1



VAE Latent Representation of GDC Expression

Uterine Corpus

34 . .
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Lung Adenocarcinoma

Head and Neck Squamous
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1 Breast Invasive Carcinoma

; : 0 Brain Lower Grade Glioma
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https://github.com/ECP-CANDLE/Benchmarks/tree/frameworks/Pilot1/P1B1




How did we know it might work?

* Build autoencoders first with the features you are going to work with

* |f you get reasonable accuracy then the model can learn a
representation and that is a good sign

* Class balance seems to matter

* Number of training examples matters > 1000 is good > 10,000 better,
> 100,000 much better

* Hyper parameter search is also important once you get something
that basically works



Generate Compact Molecular Signatures

* For each agent or class of agents we will apply feature selection methods

to the models to generate where possible a compact molecular signature
that retains prediction performance

* Typical reduced signatures include O(10)-O(100) features from >> 50,000 starting

features

Features may be genes, SNPs, URNA etc.

* Developed and applied multiple feature selection methods

* Selection criterion: Chi2, Anova, mutual info, ensemble ML, deep neural networks
LOOCV prediciton accuracy (JMIM method)

* Algorithms: ranking, intersection, iterati

maximization
Supervised recursive binning

* Extracted compact features

Features from cancer type prediction
50 features: 0.981 accuracy

20 features: 0.976 accuracy

14 features: 0.973 accuracy

RNAseq is more informative than miRN,

random forest accuracy (%)

1.0

0.9F

0.8}

0.7

0.6

0.5}

0.4
0

it miRNA
ii: RNAseq

iii: all

iv: (i) and (i) interspersed

10 12 1

4

16 18 20
L

5 10 15
number of features

20 25



Analyze Molecular Signatures to Provide Insight to Potential

Mechanisms

* Started mapping gene features to pathways
* Enrichment analysis will be applied to the signatures to identify associated pathways

* Pathways will be identified that associate with both sensitive and resistant response

phenotypes

* |ldentified co-located or known interacting pairs of gene and microRNA

signatures

* Top miRNA feature hsa.mir.10a is co-
located with ENSG00000120075.5

* It has also been experimentally
verified that this miRNA

downregulates the corresponding
HOX genes

1.00 Mb

48.6Mb 48.7M
Chromosome bands q21.32

Contigs < AC103702.3 </

Genes e
(Comprehensive set ... L

2> < HOXB2 < HOXB5 CTD-2377D24.¢
< HOXB1 < HOXB4 - < HOXB9 <.C
HOXB-AS1 > < HOXB7 <F
< HOXB3 < HOXB6
HOXB-AS3 > < HOXB8
HOXB-AS2 > HOXB-AS4 >
< MIR10A < MIR196A1
< RP11-357H14.1

Rank MIR

1 hsa.mir.10a

2 hsa.mir.205

3 hsa.mir.181a.2
4 hsa.mir.135a.1
5 hsa.mir.203a
6 hsa.mir.196b
7 hsa.mir.194.1
8 hsa.mir.9.3

9 hsa.mir.196a.2
10 hsa.mir.429
11 hsa.mir.375
12 hsa.mir.584
13 hsa.mir.135b
14 hsa.mir.10b
15 hsa.let.7i
16 hsa.mir.125b.2
17 hsa.mir.30a
18 hsa.mir.200c
19 hsa.mir.203b
20 hsa.mir.944
21 hsa.mir.1301
22 hsa.mir.138.1

RNA

ENSG00000119888.9
ENSG00000170370.11
ENSG00000157551.16
ENSG00000124664.9
ENSG00000102554.12
ENSG00000009765.13
ENSG00000275410.3
ENSG00000274173.1
ENSG00000120075.5
ENSG00000124466.8
ENSG00000204385.9
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Close examination of prediction error

* Confusion matrix
* Local feature importance
* Force plots
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RNAseq Bias Removal

Alex Partin


https://github.com/DOE-NCI-Pilot1/Normalization/blob/master/RNASeqNorm/normalize_rnaseq.ipynb

Cancer Type Classification
with SNPs



GDC: 10K samples with 10M mutations
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m) GDC Data Portal

vVEP Impact
MODIFIER

~) MODERATE

Low

HIGH

v SIFT Impact
deleterious

| tolerated
deleterious_low_confidence

| tolerated_low_confidence

v Polyphen Impact
benign
probably_damaging
possibly_damaging

unknown

v Consequence Type

missense_variant

non_coding_transcript_exon_variant

downstream_gene_variant

A Home

»
2
8

-

666,904

714,906

851,323

677,244

102,495

BEEE OBEE
0 ¥

-

,648,416

-
g
5]
~
(2]

| Projects

Cases (37,075)

Primary Site

A

%% Exploration

& Analysis

Genes (22,872)

Project

x\\iﬂ

77

Showing 1 - 20 of 37,075 cases

~ CaselD Project Primary Site
TCGA-A5-A0G2 TCGA-UCEC Corpus uteri
~1 TCGA-EO-A22U TCGA-UCEC Corpus uteri
~| TCGA-FI-A2D5 TCGA-UCEC  Corpus uteri
TCGA-AX-A2HC TCGA-UCEC  Corpus uteri
~) TCGA-EO-A22R TCGA-UCEC  Corpus uteri
~1 TCGA-B5-A3FC ~ TCGA-UCEC  Corpus uteri
| TCGA-IB-7651 TCGA-PAAD  Pancreas
TCGA-AP-A1DV  TCGA-UCEC  Corpus uteri
) TCGA-E6-A1LX TCGA-UCEC Corpus uteri
~) TCGA-AP-AOLM  TCGA-UCEC  Corpus uteri
TCGA-2W-A8YY TCGA-CESC  Cervix uteri
) TCGA-AX-A1CE  TCGA-UCEC  Corpus uteri
~ | TCGA-AP-A1DK TCGA-UCEC Corpus uteri
TCGA-A5-A10F TCGA-UCEC  Corpus uteri

£ Repository

Gender

Female
Female
Female
Female
Female
Female
Female
Female
Female
Female
Female
Female
Female

Female

Mutations (3,142,246)

Q Quick Search

OncoGrid

Disease Type

IF

Files

|U'l
(4]

(2 T 42 TN 6 ) N (62 NN 6 NN (6 2 NN [ BN (6 NN (62 I [ I (o> N (6 B 4]
RRBBBEBRIEBRERBR

N

. Biospecimen

Manage Sets

&, Clinical

Gender

%) Login

wCartfJ i GDC Apps

Vital Status

P D

Available Files per Data Category
Seq Exp SNV CNV

[ e (o I

[ITNE T TN TS TNNTN
|_A
o o o o o o o o ov o o ov o o

IS

Clinical

JSON

TSV Save/Edit Case Set

¥ Mutations ¥ Qenes Slides
42,051 14,357 h (3)
26,998 12,629 % (2
26,139 12,482 & (2
24,853 12,205 % (2
24276 11,920 2 (3)
24,584 11,902 % (2
23,084 11,453 b (3)
22,664 11,431 2 ()
23542 11,397 % ()
22,507 11,301 % (3)
21,749 11,177 2 ()
21,720 11,158 2 (3)
20,472 11,059 & (2
20,080 10,990 % (2



Ll Somatic Mutations

Showing 1 - 10 of 3,142,246 somatic mutations = | JSON | TSV  Save/Edit Mutation Set
~ DNA Change Type Consequences b Aiected Gases e Coses impact  Survival
) chr7:9.140753336A>T  Substitution Missense BRAF V600E 565/10202 1 554%  565/10,202 4 (mo Yo I PR
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How to deal withn>>p ?

* Dropout

* Regularization
* Locally connected networks

Diet Networks: Thin Parameters for Fat Genomics

Adriana Romero, Pierre Luc Carrier, Akram Erragabi, Tristan Sylvain, Alex Auvolat, Etienne Dejoie, Marc-André
Legault, Marie-Pierre Dubé, Julie G. Hussin, Yoshua Bengio



Diet Network

prediction network

* Suppose we have N

* 1000 samples X | — W, | <2uers—
* 1,000,000 features T;
* 100 neurons in the hidden layer -
MLP1
o ETVb

output layer T

input layer T

hidden layer

e Parameters in first layer = 100M



How do we represent the sparse mutations?

* Gene level / pathway level

. . . Mutations in each tumor Mutation tally Gene scores
* Weighting by impact

) ) ’

3 3 3

4 a4 4

— S . 2 ; g

* Filtering by significance ¢ 7 _ _—

8 % : :

10 10 10

. 11 11 11

* Convert to images 12 12 12
* Variant calling AE D Significance
Tumors threshold

* Annotation
MutSigCV



Deep annotation with compare region images
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|dentification of genomic islands and operons

Table 3. Quality of tools predictions: % predictions made with GI features | % predictions missed with GI features, over the

testing genomes dataset.

W Shutterlsland IslandViewer AlienHunter IslandPick SIGI Average
Predictor

ShutterIsland N/A 91% | 64% 871% 1 47%  89% 131% 87%136% 89% | 45%
IslandViewer 94% | 67% N/A 89% | 45% 80% | n/a 87% Infa  88% | 56 %
AlienHunter 74% | 70% 66% | 60% N/A 73% 121% 71%142% 7T1% | 48 %
IslandPick 69% | 76% 34% | 86% 49% | 53% N/A 54% 1 44% 52% | 65%
SIGI 67% | 75% 45% | 77% 48% 151%  50% | 35% N/A 53% | 60 %
Dimob n/a | 66% n/al 28% n/al43% n/al25% n/al23% n/al37%
Phispy n/a | 68% n/al 70% n/al50% n/al 33% n/a |l 39% n/al 52%
PhageFinder n/al 68% n/al 70% n/al50% n/al 34% n/al39% n/al52%
Islander n/al75% n/al71% n/al51% n/al 33% n/a |l 39% n/a | 54%
Phaster n/al75% n/al71% n/al51% n/al 33% n/a |l 39% n/a | 54%

Assaf et al. 2019
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Output Layer
Softmax Classifier

Hidden Layer probability that the word at a
Input Vector Lineaf/Niurons @ | Li"ﬁ?ﬂ'?él‘if::&:ﬁf'by “Skip-Gram”
o Sy With one-hot
B %Y @ o encoded centre word,
o R @ o we can predict
mbe —> ) context words.
o oz Hidden layer creates
p =) - enloyer e

10,000

http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/ neurons



Gene sets from MSigDB

EGFR Cyclin-dependent

inhibitors kinase inhibitors

] 4

. " Sustaining Evading m—
Aerobic glycolysis proliferative growth Immune activating
inhibitors signaling suppressors anti-CTLA4 mAb

Avoiding
immune
destruction

Deregulating
cellular
energetics,

Resisting
cell

Enabling
replicative

Telomerase
Inhibitors

Proapoptotic
BH3 mimetics

death immortality
Genome Tumor-
instability & _ promoting
mutation inflammation
SR Inducing Activating Selective anti-
inhibitors angiogenesis invasion & inflammatory drugs
metastasis

Inhibitors of
HGF/c-Met

Inhibitors of
VEGF signaling

22,596 gene sets

hallmark gene sets are coherently expressed
signatures derived by aggregating many MSigDB
gene sets to represent well-defined biological states
or processes.

C1

positional gene sets for each human chromosome
and cytogenetic band.

C2

curated gene sets from online pathway databases,
publications in PubMed, and knowledge of domain
experts.

C3

motif gene sets based on conserved cis-regulatory
motifs from a comparative analysis of the human,
mouse, rat, and dog genomes.

C4

computational gene sets defined by mining large
collections of cancer-oriented microarray data.

C5

GO gene sets consist of genes annotated by the
same GO terms.

Cé6

oncogenic gene sets defined directly from
microarray gene expression data from cancer gene
perturbations.

C7

immunologic gene sets defined directly from
microarray gene expression data from immunologic
studies.




Gene2vec
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Alena Harley, The Mystery of the Origin



Confusion matrix

/8% accuracy

Alena Harley, The Mystery of the Origin
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Drug Response Prediction



Modeling Drug Response

Drug (s)

descriptors M .
fingerprints @iﬁ *Cﬂ »qﬂ@
structures &j e, Vfi >C&
SMILES
dose PR S ORI

=ﬂ‘7: bl/ DZ)

. IC50 )
9 GI50 gene expression levels
& % growth SNPs )
i protein abundance
-score rORNA
Drug Concentration in Log scale AU C micro .
R methylation
esponse Tumor N



Cell Line Features
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 NCI-60: 60 cell lines

sauj| ||92 Jown] 09

* Gene expression array
* RNA-seq
* Protein abundance

* microRNA

* Molecular Assays: 20
* Mutations
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Figure adapted from Kundaje et al. Nature 2015



Drug Features c
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Deep Learning Model for Drug Pair Response

‘ Predicted Percentage Growth ‘

?
‘ Layer FC4
? M
\ Layer FC3 ,
7 Residual
‘ Layer FC2 connections
\ Layer FC1 =
Concatenation layer: all encoded features
Expression ‘ Proteome \ microRNA ’ Drug 1 ‘ Drug 2
; /.
Layer E3 Layer P3 Layer M3 ' | Layer D3
Molecular | ' yT y : , Y ; ’ Y ‘ ng:gd
feature Layer E2 Layer P2 Layer M2 Layer D2 descriptor
models I ¥ . F B 7 model
Layer E1 Layer P1 Layer M1 | | Layer D1
~ V. el '
Cell line molecular features Drug 1 descriptors ‘ Drug 2 descriptors

Fig. 2. Neural network architecture. The orange square boxes, from bottom to top, represent input features, encoded features, and output growth values.
Feature models are denoted by round shaded boxes: green for molecular features and blue for drug features. There are multiple types of molecular features
that are fed into submodels for gene expression, proteome, and microRNA. The descriptors for the two drugs share the same descriptor model. All encoded

features are then concatenated to form input for the top fully connected layers. Most connecting layers are linked by optional residual skip connections if
their dimensions match.

©ENERGY () NATIONAL CANCER INSTITUTE



Uno: Predicting Single/Paired Drug Response
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Cell line
_—

PDTX
—_—
£ normal epithelium
<\ adenoma
JAO) adenocarcinoma
~ vasculature Organoids
<, mesenchymal cell —_
s immune cell
Z\- extracellular matrix

Cell line LS174T Organoid line P23T Organoid line P26T
(% adenocarcinoma) (differentiated CIN) (% adenocarcinoma) (% adenocarcinoma)

Current Opinion in Genetics & Development

Organoid cultures for the analysis of cancer phenotypes, Sachs and Clevers, 2014




Data in place for model training and testing

Dose
Independent

11,671
395,264
6,456

225,481

3,780,150
(60,000)

GENEﬁGY m) NATIONAL CANCER INSTITUTE

Table 1. Integrating cell line, PDX, and real tumor samples across multiple studies

Data Source Z:;:;:: # Drugs i D"S‘"‘:nlf;fg’“se Tr‘;‘;‘yt:f“t
NCI-ALMANAC 60 104 3,686,475 Drug pair

CCLE 504 24 93,251 Single drug
CTRPv2 887 544 6.171.00> Single drug
gCSI 409 16 58,094 Single drug
GDSC 1,075 249 1,894,212 Single drug
NCI 60 52,671 18,862,308 Single drug

GDC 11,081 N/A N/A N/A
NCI-PDM 1,198 12 518* pi:féedilgs

* PDM drug response were measured differently from cell line dose response data.




Patient Derived Xenograft Models

Patient-derived xenografts (PDX) &

conditionally reprogrammed cell lines A > 0.25%"
. [ Create reprogrammed \\=//
' v cell lines
. N V- N

Tumorigenesis

N A [l Y

Transplantation
R A A into NSG mice

Tumor/patient
heterogeneity

Nature Rev. Clin. Oncol. 11: 649-662, 2014.

‘Eﬁé’v m NATIONAL CANCER INSTITUTE

Cancer Cell Lines
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CANDLE prediction
analysis notebook



file:///Users/fangfang/Downloads/CANDLE-prediction-exploration.html
file:///Users/fangfang/Downloads/CANDLE-prediction-exploration.html

Perceptual distance vs data distance

* Metric learning

* Representation learning
* Feature encoding

* Embedding

* WordVec, ProteinVec




Siamese network

| Feature Extraction; Join
! || ||

Matching
|

‘ Distance

Pairs could be gene expression replicates
or samples from the same cancer type




Focusing on the difficult parts

* Mine the difficult samples

* Change loss function

Triplet
= Loss

! t>| DEEP ARCHITECTURE | o

Batch

GOzZz-oOomwEm

Figure 2. Model structure. Our network consists of a batch in-
put layer and a deep CNN followed by L2 normalization, which
results in the face embedding. This is followed by the triplet loss
during training.

Negative

Anchor LEARNING
Negative

Anchor
Positive Positive
Figure 3. The Triplet Loss minimizes the distance between an an-
chor and a positive, both of which have the same identity, and
maximizes the distance between the anchor and a negative of a
different identity.



Focal Loss for Dense Object Detection

Tsung-YiLin Priya Goyal Ross Girshick Kaiming He Piotr Dolléar
Facebook AI Research (FAIR)
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DL Challenge:

from surface pattern recognition
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Just fancy regression?

Sequence to sequence models

Input Output

1+1
19+28
577+45

in I
S
~ S

622

=r =

0oeu - Ou
Att+lUfh= 73—

Function approximation

#include
void main(int argc, char *argv[])

{

int k,r;
int i=0,j=1,f;
int sum=1;

r=10; =>
for (k=2; k<r; k++) {

f=i+j;

i=j;

i=f;

sum=sum+j ;

by

printf(
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Discovering physical concepts with neural networks

Raban Iten, Tony Metger, Henrik Wilming, Lidia del Rio, Renato Renner
(Submitted on 26 Jul 2018 (v1), last revised 29 Sep 2018 (this version, v2))

We introduce a neural network architecture that models the physical reasoning process and that can be used to extract simple
physical concepts from experimental data without being provided with additional prior knowledge. We apply the neural
network to a variety of simple physical examples in classical and quantum mechanics, like damped pendulums, two-particle
collisions, and qubits. The network finds the physically relevant parameters, exploits conservation laws to make predictions,
and can be used to gain conceptual insights. For example, given a time series of the positions of the Sun and Mars as
observed from Earth, the network discovers the heliocentric model of the solar system - that is, it encodes the data into the
angles of the two planets as seen from the Sun. Our work provides a first step towards answering the question whether the
traditional ways by which physicists model nature naturally arise from the experimental data without any mathematical and
physical pre-knowledge, or if there are alternative elegant formalisms, which may solve some of the fundamental conceptual
problems in modern physics, such as the measurement problem in quantum mechanics.
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