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LEADERSHIP IS NOT ONLY ABOUT
COMPUTING

» Hundreds of Petabytes Storage
Systems o ESnet5 Feb 2014

= | arge-scale data analysis and £
visualization

» World leading network
interconnecting facilities

(100 Gb/s = 1 Tb/s)

= DOE invests more than $1Billion/yr ~ *o _H
in the computing capabilities a the = s
laboratories
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MATHEMATICS AND COMPUTER SCIENCE

= > 1000 Computer Scientists,
Mathematicians and Statisticians at the
laboratories

= Expertise in

— Modeling and Simulation of Complex
Phenomena

— Mathematical Techniques

— Software for Scientific Computing

— Parallel Computing

— Machine Learning

— Data Analysis

— Data Mining

— Uncertainty Quantification

— Verification and Validation

— Software Engineering
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WORLD LEADING
COMPUTATIONAL SCIENCE

» Hundreds of Computational “X” Scientists at
each Laboratory

» Groups, Codes and Tools Spanning Many
Disciplines Relevant to Precision Medicine

= Comparative Genomics and Systems Biology,
Biophysics, Microbiology, Proteomics,
Mesoscale Modeling, Text and Image
Analysis, Data Modeling and Data
Integration, Predictive Modeling




OUTLINE

= DOE-NCI Pilot Projects
— Machine learning projects and their focus areas
— Machine learning for Next Generation Sequencing and Drug Discovery

= Overview of example models and their initial results

= Overview of CANDLE Technology Stack
— Example workflows implemented on CANDLE
— Hyperparameter optimization
— What this workshop is all about?
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DOE-NCI PILOTS
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NCI-DOE PARTNERSHIP WILL EXTEND THE FRONTIERS
OF PRECISION ONCOLOGY (THREE PROJECTS)

= Cancer Biology S bty
— Molecular Scale Modeling of RAS Pathways mg\f\s"s‘mm
— Unsupervised Learning and Mechanistic : : % : b <
models | @ l \
— Mechanism understanding and Drug Targets R e e g e
* Pre-clinical Models POX mouse model
— Cellular Scale PDX and Cell Lines &R I o

— ML, Experimental Design, Hybrid Models
— Prediction of Drug Response

= Cancer Surveillance
— Population Scale Analysis
— Natural Language and Machine Learning
— Agent Based Modeling of Cancer Patient
Trajectories

Biopsy sample of tumor
is implanted into a mouse
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PILOT 2: RAS PROTEINS IN MEMBRANES

/— New adaptive sampling molecular dynamics —\
simulation codes

Adaptive F =y 7 = Adaptive
time Coarse-grain ‘ Classical ‘Quantum Spatial
stepping MD MD MD resolution
\_/ \/
\_ High-fidelity subgrid modeling -/

/— Predictive simulation and analysis of 4\

RAS activation

RAS activation
experiments at NCI/FNL

X-ray/neutron

N -y ANy
CryoEM imaging Granular RAS membrane Atomic resolution sim of Inhibitor target

scattering Kinteraction simulations RAS-RAF interaction discovery /
MG Rl @IPEimEiE] Machine learning guided dynamic
data, image reconstruction, / validation \

analytics

Protein structure

databases

M 00 0T

\ 008 007 008 0
PSR

Unsupervised deep Mechanistic network Uncertainty
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PILOT 1: PATIENT DERIVED XENOGRAFT MODELS

Patient-derived xenografts (PDX) &
conditionally reprogrammed cell lines

{ \

A N

( A > Molecularly characterize,
- Create reprogrammed treat/screen mice begnng
v cell lines transplants & cells with
) relevant drugs.

“Pre-clinical clinical trials”

A > d
Tumorigenesis
- Transplantation "

Tumor/patient
heterogeneity

Nature Rev. Clin. Oncol. 11: 649-662,2014.
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PILOT 1: PREDICTIVE MODELS FOR PRE-CLINICAL

SCREENING

Terabytes

Compound
Databases

PDX

PDX Features Compound
Screens
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Machine Learning Based Predictive
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Transcriptomics

Proteomics
Variation

Transcriptomics

Imaging

Small RNAs

Qeature Engineering, Cross Validation, Scalable Compute on CORAL/

Uncertainty and Optimal Experiment
/ Yy p P \

&Analysis, Model Selection, Model Improvement, Proposed Experimwts

Hypotheses Formation and Mixed
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PILOT 3: Al TO SUPPORT NATIONAL
CANCER SURVEILLANCE

lil
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{ { { | | | |
Molecular Initial Subsequent Progression Survival

Demographics  Pathology Characterization Treatment Treatment Recurrence Cause of Death

N

A2

‘ SEER Cancer Informatioj

Understand treatment and
improve outcomes in the

“real world” Resource
: :
Prospectively support development | |
, of new diagnostics and treatments
Exposome Genome
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PILOT 3: POPULATION INFORMATION INTEGRATION,
ANALYSIS AND MODELING

Free text
O(Terabytes) - Deep Text Comprehenswn + Multi-Task Learnlng
NCI SEER Clinical |[|7T> | = network  methods for (B
Database Reports 2 — layérs > POS Tagging, T
— _ = Fast Look-up hidden units NER, SRL, +
O(Petabytes) Temporal & Spatial S for features = SRW =
— i ] =
: Trajectory s Traditional NLP + Data Analytic/Machine Learning <
Electronic = e
Medical OMICS . 5 POS Named Entity Semantic Role  Semantically o
_Records/Claims | | - Genomic =™ Tagging Recognition Labeling  Related Words
" Imaging (NER) (SRL) (SRW)
O(Terabytes)
)
Hospitals/ § s ( Novel Data AnaAIytlc Techr:qgei_for Iritegr?tlr?n arrd Analysis
AL 2 a " Graph In-memory /" Visual
O(Petabytes) & g 'Malytics Analytics = /- Analytics
etabytes 5 ~ AR -l i
v E 8 L < 'T.' 4 PR
o u
Census .f_f Data-driven Integrated Modeling & Simulation for Precision Oncology
\_/ -
—_ - social media New Clinical )
[ —) & . —
Patient . personal Bio-markers '§
Generated devices 3
Data . Other non- Other patient- .(é\
traditional data | relevant data S
i
Personalized Precision profile Crompememm it = B e N
Pre-clinical Results from for patient/ patient Clinical trial simulations on HPC for
Profiles Pilots 1 & 2 cohort patient cohort — O(100K) individuals
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OVERVIEW OF MACHINE LEARNING CHALLENGES
IN DOE-NCI PILOTS




PILOT 1: OVERARCHING
MODELING GOAL

A single model trained on data from
many cancer samples, many drugs
that can predict drug response
across wide range of tumors and
drug combinations
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MODELING CANCER DRUG RESPONSE

Drug (s) Y O“ "o S
descriptors | st
fingerprints § RS MO
structures VL T R
SMILES | e oLy o CF mi §<>
dose A

%; IC50 gene expression levels
2 AUC SNPs
GIS0 prfjteln abunhdance
% growth microRNA
Drug Concentration in Log scale Z-s-core methylatlon

Response Tumor
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WHAT FEATURES TO USE FOR DRUGS

AND TUMORS?

= Tumors

— RNAseq Modeling Cancer Drug Response
— SNPs/CNVs

: Drug (s)
— Protein Abundance

descriptors

fingerprints

* Drugs

dose

structures | e
SMILES e

— Descriptors
— Structures
— SMILES

1 T
[ | Ve Cto r' E m bed d | n g S g IC50 gﬁlr:)e expression levels
N S
- AE/VAE SA)IZ?owth protein abundance
E I Drug Concentration in Log scale AUC mlcrORNA
- XpreSSIOn Response methylation

l .
" R= 17, D1, D,) pom

— SMILES Tumor
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DEEP
MULTITASK
MODEL FOR
RESPONSE
PREDICTION
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CAN WE BUILD MODELS THAT ARE
PREDICTIVE OF DRUG RESPONSE?

Dose Independent, Top 6. Top21, cancers, Attention MLP (Means from 10-fold CV)

Top 6 Cancer Types

PrGCiSion Reca" f1 -SCcore AUC Distribution for Top 21 Pan-Cancer Data
0.917 0.790 0.837 Mordred, Lincs1000 (bin.3) 175000

0.933 0.853 0.882 Dragon7, Lincs1000 (bin.3) ...,

0.933 0.855 0.884 Dragon?, Lincs1000 (bin.1) |  [Feiiedes] | [emseespanders)

Top 21 Cancer Types
Precision Recall f1-score
0.95 0.927 0.935 Dragon7, Lincs1000 (bin.3) 23]

(~6,200 features) "
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Multi-Drug “Pan cancer”

Top 21 Cancer Types
SINGLE DRUG RESPONSE in MD DI formulation

Normalized confusion matrix

Drug RA2 MAE AUC Accuracy 00

Afatinib 0.4369 0.0737 0.9248 0.9679 '

Bortezomib 0.3871 0.0752 0.9429 0.9569 0.8

Docetaxel 0.5748 0.1154 0.9158 0.8853 Non-Response

Doxorubicin 0.3749 0.1103 0.7794 0.7105

Etoposide 0.3787 0.1108 0.8855 0.8768 %

GDC-0941 0.3294 0.0744 0.6924 0.9478 v

Navitoclax 0.4329 0.0982 0.9035 0.9295 = - 0.4

Paclitaxel 0.5299 0.1285 0.8471 0.7626 i
.. Response - 0.11 0.3

Selumetinib 0.2944 0.1056 0.8831 0.9115

SN-38 0.3415 0.1150 0.8269 0.8361 02

Temsirolimus 0.2048 0.1136 0.7406 0.8912 | ro1

Tipifarnib 0.3187 0.1115 0.8474 0.8981 | & &

Vinorelbine 0.1407 0.1289 0.7605 0.8367 Q@@Q° Q&@Qo

Vorinostat 0.4041 0.0627 0.9134 0.9532 &

mean 0.3678 0.1017 0.8474 0.8832 Predicted label

Models are best of RF, LGB, GB, LR, etc.; features are RNAseq and D7 aescriptors
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LEARNING CURVE POWER LAW
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Learning curve (power-law)

| T~{em =am?; a=4.98, p=-0.71

N —— 2-layer NN
Ie(m) =amf; a=0.43, B=-0A10] - 2-layer NN Trend
. == 4-layer NN
We(m) =amf; a=0.50, B=-O.19] - 4_-Iayer NN Trend
—— LightGBM

===+ LightGBM Trend

e |

m. s as 2 5z =
Training Dataset Size (Log2 scale)

Top6 Cancer Response

It seems that the advent of models that beat the power-law exponent —
that get more data efficient as they learn — might be an important
empirical milestone on that path.

Tt
managed by UChicago Argonne, LLC.

yttne:/farxiv.org/pdf/1712.00409.pdf

Argonne &

NATIONAL LABORATORY




CAN WE BUILD MODELS
THAT GENERALIZE ACROSS
STUDIES?
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UNO-MT

Drug response
Auxiliary Cell Cell Cell RNAseq Drug Drug Aucxiliary
molecular | line line line auto 3 weighted target drug
tasks type = site | category | encoder QED family tasks
i o f B
t t t t 1 t 1
I I f I i f
Concatenation layer:

wenwdw featu‘ras\ \ /
= =\

Molecular t Drug f
feature feature
encoder t encoder i
\ o >4 \ -~/

Cell line RNAseq profiles Dose Drug descriptors | | Drug fingerprints
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Table 2: Baseline cross study validation results with Random Forest

Testing Set
Training Set NCI60 CTRP GDSC CCLE gCSI

NCI60 R? =0.45 R? =0.23 R%2=0.15 R%2=0.29 R%2=0.14
MAE =304 MAE=346 MAE=373 MAE=343 MAE =540

CTRP R? =0.41 R? =0.30 R?=0.15 R? =045 R?=0.17
MAE =317 MAE=350 MAE=374 MAE=29.0 MAE=396

GDSC R? =0.33 R?=0.14 R?=0.13 R?=0.17 R? =0.08
MAE =360 MAE=415 MAE=404 MAE=424 MAE =43.0

CCLE R?=0.12 R? =-0.03 R?=-0.11 R?=0.17 R?=0.32
MAE =426 MAE=489 MAE=47.1 MAE=424 MAE =38.5

OS] R? =-0.38 R%2=-051 R? =-0.59 R? =-0.09 R? =0.25
g MAE =550 MAE=590 MAE=587 MAE=48.6 MAE=399




UnoMT Multitask Deep Learning Cross-Study

Best out of Study R2=0.61

Table 6. Best cross study validation results with a 3-task UnoMT

Testing set
NCI60 GDSC CCLE gCsli N/T Cat Acc| Site Acc | Type Acc
NCI60 M'f;:oﬁ 1 M'f;:;‘_‘s 99.43% | 96.75% | 96.97%
CTRP M'iz;:oz'g?? Mr‘;f;:"‘;ji 99.56% | 96.62% | 96.58%
Training set | GDSC M§2E==Oéi?0 M§2E==°:;§’7 M'f;oz'??z 99.43% | 96.93% | 96.97%
gCsl| Miz;:ozig(.)g MRAZE==°AQ?1 M§2E==o‘ig.58 Miz;:oi?)?s AI;,fE::O 58902 et [

o
ment of y lab:
y UChicago Argonne,

§ 2L Vi3 VETAR LMLt Ur Argonne National Laporat
g @ ENERGY U.S. Department of Energ
Rt managed b hicag:

yisa
oratory
,LLC.

MAE = Mean Absolute Error (in percent growth)
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Pilot 1

Comparison on PDX Prediction Performance With
and Without Transfer Learning

Spearman rank P-value (Spearman
Analysis name R? P-value (R?) correlation rank correlation
coefficient coefficient)

PDX-Only 0.064(0.031) 0.372(0.022)

CCLE-TL 0.042(0.016) | 8.01E-02 0.355(0.013) 7.28E-02
gCSI-TL 0.389(0.017) 7.55E-02
NCI60-TL

CTRP-TL

GDSC-TL

PDX-only is the analysis without transfer learning. -TL in analysis name indicates transfer learning from a CCL

dataset.
Mean (standard deviation) of prediction performance is evaluated through 10 times of 10-fold cross-validations on PDXs

Four out of the five transfer learning analyses show a prediction performance statistically significantly better than that of
PDX-onIy analysis, evaluated by the p-value of t-test < 0.05

;" nal Laboratory is
() ENERGY 8HEiiey Argonne &
NATIONAL LABORATORY



ACTIVE LEARNING SIMULATION

—— high_diversity
——  sensitiv f st
0.7 1 —— incremental_high_uncertainty
_— high_uncertainty
——— random
—— low_uncertainty
0.6 - =
0.5 -
0.4 +
o
5
(o]
=y
S 03
0.2
0.1 :
225,481
i
0.0 A 1
395,264
g | | 3
s 18 | 3
-0.1 L ' ' !
103 1072 1071 10°

Sample size relative to CTRP training set
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SUMMARY

= A suite of deep learning models that have been applied to drug response
prediction:
— DL models show better predictive power
— More data > more predictive power!
— An active learning simulation demonstrates how much data we may
ultimately need to have a single model that works across different types of
cancers and different drugs

» Uncertainty quantification across models (although not discussed)
= Consistent evaluation across multiple datasets and prediction tasks

AAAAAAAAAAAAAAAAAA



PILOT 2: OVERARCHING
MODELING GOAL

Build unsupervised machine
learning models to potentially steer
molecular dynamics simulations
towards “interesting states”
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A VARIATIONAL APPROACH TO ENCODE PROTEIN FOLDING
WITH CONVOLUTIONAL AUTO-ENCODERS (CVAE)

e
S £
© 8 ©
S 1. 64 filters, 3x3 window, 1x1 stride, RELU IS 8
E 2. 64 filters, 3x3 window, 1x1 stride, RELU oo Pe)
D 3. 64filters, 3x3 window, 2x2 stride, RELU s E
4. 64 filters, 3x3 window, 1x1 stride, Sigmoid s w
a 1 1 >
2 2 oS LW
= 3 3 <
4 %14 >
) o A o A o A
2 ANE o
2 o ze 3 29
(] C 33 C (S
e [ — | =2 o S ®
—— o S % g 0O +-— E
3] 3 » 2 -
© = S ©
'E \ J y \ y — o _.(E
o - O c
@) - o S
B : Reduced .
INPUT 4 convolution layers dimension: 3 4 deconvolution layers OUTPUTS
Related work:
D. Bhowmik, M.T. Young, S. Gao, A. Ramanathan, BMC Bioinformatics (2019) Hernandez 17 arXiv,
Source code: http://ramanathanlab.org Doerr 17 arXiv
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http://ramanathanlab.org/

CVAE REVEALS "METASTABLE STATES” IN PROTEIN
FOLDING...

ts

tac

Fraction of native con

tac

Ky

MSM Builder Datasets, Pande group




WHERE TO SAMPLE NEXT?

IDEA: CONVERT FROM ‘TRAINING’ MODE TO ‘INFERENCE’ MODE...

Output

-Inpt

Output

-np t

Otpt

Yes
—
«— -«—
ermoratery i¢ 2 -
(Z)ENERGY M8 tsiatey 33 Argonne &
NATIONAL LABORATORY
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NOVEL DATA POINTS IN THE LATENT SPACE
ENABLE SAMPLING FOLDED STATES

+ 1.0 [ 1.0

ional Laboratory is a
e sy 34
i rgonne, LLC.

Root mean squared deviation to native state (RMSD; A)
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PUTTING TOGETHER A SCALABLE WORKFLOW

Machine Learning/ Deep Learning tasks

GPU 1

Simulation tasks

GPU 2

GPU K

MD Simulation 1
(OpenMM)

MD Simulation 2
(OpenMM)

MD Simulation K
(OpenMM)

v

v

v

Data collection (trajectories + contact maps [.h5])

Hyperparameter optimization/ training

A

CVAE training 1

CVAE ftraining 2

CVAE training M

GE') collect 100,000 conformations for training (Tensorflow) (Tensorflow) (Tensorflow)
'-Z A y A ¢ ¢ ¢
2 MD Simulation 1 | | MD Simulation 2 MD Simulation K (Cieese (38 GYAS IETels T8l filEiEnEs
3 (OpenMM) (OpenMM) (OpenMM) i
(0]
u>j CVAE inference
(Tensorflow)
v
Terminate simulations No novel Cluster
states < conformational
E outlier s
. o detection
Spawn new trajectories with novel states Yes
iterate until new ftraining
JV i l cycle is needed or
MD Simulation MD Simulation protein is folded
K+1 K+2
(OpenMM) (OpenMM)
v v v
S. DEPARTMENT OF _ Argonne National Laboratory is a
: y 35 Argonne &
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YES, WE CAN FOLD A PROTEIN... [CASE 1: FS-PEPTIDE]

AL' B o12] 8]
101 ot0f £ i
o’\ I unfoltled states : - %é
Z s R F008) iF e s .
i o %) {98 8 £ 3
- 3| ‘l | ! ‘fr'“‘ S0.06{ :>8: 51 S
w0 6 —— Mt 1563383192 i) IS Ei i 83
S | i ! ”" 1563383206 S0.04 ig i Ly g%
J il tially folded / 1563430356 ’ : : o -
o _L ‘ iprj(;;:wgd\i;teestates 1563430360 , E
0.0
i 1563430371 Ve
2 1 I:I native state o i
0.00 + H
00 0.5 1.0 1.5 20 25 3.0 3.5 3 5> 6 7 8 9 10 1
. . . RMSD (A)
Simulation time (us)
C l. D |
§ 0.6
) 2
= | e - )
P l -8 n;\ i L ()_
« _‘ ¢ 3 0 — » (J Z ,_‘Wn.. .
' . 8 2 B 1 : —(0.2
‘%; —9 = —9 - .
J— - ;,_-\J -
; 03 1.0
= J

> o > )
=1y —1 2z 4 1 51z 02 ~npr 0.5
1 -2 | ) 2 V/ )
HENE P & 2, 2 3_3° 06 1.0-1.0
F unfolded states partially folded / intermediate states native state
~T g
V(Vm%:&' — \W‘ j‘ 5

¥
RSO R

’ﬁ% U.S. DEPARTMENT OF ﬁrgo[r;ne National If_aéborato:ygs a
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VISUALIZATION CAPABILITIES: INTERACTING WITH INSIGHTS
FROM DEEP LEARNING APPROACHES




SUMMARY

= Demonstration that deep learning interleaved with MD simulations can lead to

productive trajectories:

— protein folding is one example
— refining MD simulations in the context of experimental data

= Scaling issues with Al/DL integrated simulation workflows need new ways to think

about performance:

— key challenge emerges from training times of Al/DL are ‘on par’ with simulation timescale
— Effective performance metric: ratio of the time taken to solution (e.g., achieving RMSD of 0.3 A
to the native state) of application with and without learning

= New hardware/software needs for Al/DL coupled MD workflows:
— Streaming analytics

38 Argonne &
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CANCER PATHOLOGY REPORT PROCESSING
PIPELINE

TIONAL
CER
INSTITUTE

Integration with structured data
NCI SEER from Electronic med/ca/ records

Registry PatientiD Record No. Tumor No. Primary Site Source Section | Relevant text Primary site Primary site
category code

114431 3 Breast Final diagnosis Mammary Breast C50.9
carcinoma Breast,NOS ‘mation

KY 118420 5 Breast Final diagnosis BREAST BREAST C50.9 Breast, e
PRIMARY NOS

SE 0084621 500713999 01 Lung Final diagnosis Lung, right lung C34.3 lower

lower lobe lobe, lung
&

<PATIENT_DISPLAY_ID>

PAT-00645333

</PATIENT_DISPLAY_ID>

<TUMOR_RECORD_NUMBER>

02

</TUMOR_RECORD_NUMBER>

<RECORD_DOCUMENT_ID>

REC-3000679115

</RECORD_DOCLHENT_10>
**PROTECTED[end]

<'rsxr PATH_CLINICAL_HISTORY>

ClinicalHistor)

Result to - NAME[ZZZ Yvv]

Certlfled Tumor

Registrar
Poorly differentiated adenocarcinoma consistent with lung primary (see
s st e e CTR at a cancer registry reviews complete patient

Procedure->f
Clinical Hxstory/D)agnos:s/condition->I.UL cavitary lesion lung./r/n
</TEXT PATH, CLIN!CAL_H!STDRV)

Patient Pathologist | ===

</TEXT_PATH_COMMENTS>
FOR!

Diagnosis by a pathologist analyzing tissue

rate sclerotic
. . glandul: i § eains ar al
Sp e Clm en fro m patl e n t ::Z;o:r:nt:z“ Iheotum:r cells nr; pos;(ive for :yto:;ratir;: rr: -1, :r:a pz:t‘(‘f::a:li) and m edlcal re CO rd + path repo rt

—

U.S. DEPARTMENT OF _ Argonne National Laboratory is a
U.S. Department of Energy laboratory A
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NCI-SEER IS A PRIMARY DATA SOURCE... NEED
TO MODERNIZE

ClinicalHistory:
Left breast mass 6 o?clock; Solid suspicious mass.

</TEXT_PATH_CLINICAL_HISTORY>
@ <TEXT_PATH_COMMENTS>

</TEXT_PATH_COMMENTS>
<TEXT_PATH_FORMAL_DX>

— Abstracting structured data from free-text

Breast, Left, 6 0'clock, Ultrasound Guided Core Biopsy:
Invasive Ductal Carcinoma, Nuclear Grade 3 Over 3, Poorly Differentiated.

pathology reports is critical for the national e
cancer surveillance program e

GrossDescription:
Received in formalin labeled left breast core biopsy 6 o?clock per the container and lef'
Fixation of specimen reviewed and assured to be 6 to 48 hours.
AC:lefb *+DATE [May 4 2013].
® ( H ALLE N G E </TEXT_PATH_GROSS_PATHOLOGY>
<TEXT_PATH_MICROSCOPIC_DESC>

MicroscopicDescription:
The core biopsies from the left breast at 6 o'clock consist of cores of mammary tissue w

- Ma n ual a bSt ra Ction iS time-consu ming' Costly' ER/PR HERCEPTEST (QUANTITATIVE INTERPRETATION)

Estrogen and Progesterone Receptor analysis and the Herceptest (DAKO) for HER2 protein ove

a n d n Ot Sca I a b I e IMMUNOHISTOCHEMISTRY TECHNICAL INFORMATION:

Deparaffinized sections of tissue are incubated with the following panel of monoclonal ant
SUMMATION OF FINDINGS:

The Estrogen Receptor (VECTOR-CLONE 6F11) is negative in 100% of the tumor cells showing @

® G OAL NOTE: Positive Estrogen Receptor is defined as positive staining of greater than or equal

Immunohistochemical estrogen receptor and progesterone receptor test results are reported |

— Develop a Sca I a ble fra mework for a utomated NOTE: ASCO/CAP scoring criteria for HER2 protein over-expression by immunohistochemistry a
information extraction from pathology reports e, e

U.S. DEPARTMENT OF Argonne Nanona\ Laboratory |s a

ENERGY (15 Beien, Argonne &
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DATASETS USED FOR PRELIMINARY RESEARCH

STUDY 1: Limited dataset of de-identified breast and lung cancer electronic

pathology (e-path) reports from 5 different SEER registries
~2,500 breast and lung cancer de-identified e-path reports
Partially annotated for subsite, laterality, grade, behavior

STUDY 2: Large dataset of e-path reports from Louisiana Tumor Registry housed at
the PHI enclave within ORNL

~267,000 reports from Louisiana Tumor Registry (2004-2017)

Gold standard for site, laterality, grade, behavior, histology derived from

consolidated “Cancer/Tumor/Case” (CTC) records

E,"'*é U.S. DEPARTMENT OF _ Argonne National Laboratory is a
& )l U.S. Department of Energy laboratory A
(#JENERGY Z5ie A rgonne
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EXPERIMENTAL PIPELINE

DATA PRE-PROCESSING

* Duplicate records

« Non-contradicting labels

* Incorrect organ
annotations

* Small sample sizes

* Corpus curation

FEATURE REPRESENTATION

« TF-IDF
« Bag-of-graphs
« RAKE

« CHUNK
GLOVE

managed by UChicago Argonne, LLC.

A 4

TRAINING PROTOCOLS

Without over sampling

With over sampling

A 4

A 4

RULE-BASED SYSTEMS (RL)
Contextualize (keywords for
topics of interest)

Term identification
Classification

MACHINE LEARNING (ML)

Naive Bayes (NB)

Logistic Regression (LR)
Random Forest (RF)

Support Vector Machines (SVM)
Extreme gradient boosting tree
(Xgboost)

DEEP LEARNING (DL)

Convolutional neural nets (CNN)
Hierarchical Attention nets (HAN)
Multi-task Deep neural net (MT-
DNN)

A 4

PERFORMANCE METRICS

Precision (positive
predictive value) / Recall
(sensitivity) / F1 per class
Macro / Micro scores
(aggregate performance
over all)

A 4

VALIDATION STRATEGIES

K-fold cross validation (K-
fold)

Leave-one-registry out
(LORQO)
Leave-one-case-out per
registry (LOO_R)




A ‘GENTLE’ INTRODUCTION TO CONVOLUTIONAL NETS
(CNN) FOR TEXT

Given a document represented as a collection of words, how do we extract features automatically?

100 « Text is presented in the form of a document
= o Té . matrix — a sequence of word embedding vectors
o 300 s L [1[]ee[]100 ‘__\_\ § . . .
u -t sl il ~ 3 *  Multiple convolutional filters capture context
n °e v ofa s R pRU I N § along a document:
1500 : : = FOHALH R | £ « Word lengths {3,4,5} are used to “slide”
o sf= s} - % along the entire length
i n AR B np
e 31- I g § « Network learns to select context features in via
~.Hg B B max pooling
e Word et Comolton Fen froFr:z::t:)l;\e/oii:f;ns i ol Cﬁ;‘iﬁ“ (l):;g:l [ e Selected features are concatenated and fed

though a fully connected layer where
regularization occurs

« Output is finally a softmax classifier

“Deep Learning for Automated Extraction of Primary Sites from Cancer Pathology
Reports,” IEEE Journal of Biomedical and Health Informatics [January 2018]

Argonne &
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CNNS PERFORM BETTER IN BASIC INFORMATION EXTRACTION TASKS
COMPARED TO CONVENTIONAL ML APPROACHES

Deep
Learning

B GRADE macro-F1

B SUBSITE macro-F1
u SUBSITE micro-F1

Random Forest
Support Vector Machine

Logistic Regression

Conventional
Machine Learning

Naive Bayes

0 01 02 03 04 05 06 07 08 09 1
(7) ENERGY L8 Begitetey Argonne &
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LAYERING AN RNN WITH ATTENTION...
HIERARCHICAL ATTENT—"" "'/~ 2222 20

Tanh (Pretraining)

= Word level embedding:

capture important words in a sentence
Output. sentence embedding weighted based
on word occurrence/ co-occurrence most
relevant for classification task

» Sentence level embedding:

capture important sentences within a
document

Output: weighted sentence embedding based
on relevance for classification task

» Final document embedding is fed into classification

Hierarchical Attention Networks for Information Extraction from Cancer
Pathology Reports,” Journal of American Medical Informatics Association
[appeared on/me Nov 2077]

SR nal Laboratory is
>K‘F‘ ﬁaSanpd b;nLeJr(‘:h ng Agél o LLC

Document Dropout
Embedding P
T Softmax (Classification)
Dot Product Attention Softmax
Attention Hidden Layer
Bidirectional | -*| Bidirectional [ - Bidirectional [ - Bidirectional |- Bidirectional
GRU/LSTM |«-4 GRU/LSTM |«-{1 GRU/LSTM |«-{ GRU/LSTM [«-{ GRU/LSTM
LE1 LE2 LE3 LE4 LE5
Dot Product Attention Softmax
Attention Hidden Layer
Bidirectional Bidirectional Bidirectional Bidirectional Bidirectional
GRU/LSTM GRU/LSTM GRU/LSTM GRU/LSTM GRU/LSTM
WE1 WE2 WE3 WE4 WE5

AysielalH aul

AysuelalH plopn



HAN PERFORMS BETTER IN BASIC INFORMATION EXTRACTION
TASKS COMPARED TO CONVENTIONAL ML APPROACHES

HAN with pretraining, word and line attention
HAN with word and line attention

HAN with line attention

HAN with word attention

RNN with attention

Deep
Learning

RNN without attention

CNN

Random Forest
Support Vector Machine

Logistic Regression

(o)]
_c
m._
c £
S
T =
TR
2 .£
<
U
p

Naive Bayes

0 01 02 03 04 05 06 07 08 09

1

B GRADE macro-F1
B GRADE micro-F1
W SUBSITE macro-F1
% SUBSITE micro-F1
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INTERPRETING WHAT CNNS AND HANS
LEARNED FROM EPATH REPORTS

CNN HAN

[ line 1 clinical information : 5.
0 | | [brads|

— line 2 case ] number
[biopsy| [of| [left] [upper| lobe mass line 3 patient name aaa bbb
] . . N line 4 :
stains show the tumor is  positive . .
l - a . left breast  ; core needle  biopsy at two [GEIGEK] 11 cm from nipple :
tan tlssue . ine 6 positive for - adenocarcinoma
segments

B I _ fem] |- .
sub mltted or microscopic evaluation :oall

cassettes

name  zzz  yyy XXX  ascp line 7 ﬁ yyy XXX ascp
cytotechnologist line 8
electronically ‘signed - . {22 am line 9 electronically signed - 08 : 24 am
name | www wv|  md line 10 name WWwW mI VWV md
pathologist line 11 H
electronlcally signed datetoken 03 : 57 m line 12 electronica signed - 10 : 38 am
- r - - - presen line 13 gross _ . 3 smears in @‘ etoh
m°“°'ayer PreP r H specimen right -
ine specimen i :

- l line 16 satisfactory for cytologic evaluation I
for cytologic evaluation .
CNNs blindly associate context with importance HANSs interpret context based on most important
based on how often words occur in its words in a sentence 2 sentences = document.
neighborhood. Moving along a row, these words Neighboring words/sentences provide overall

may not always capture the required clinical context.  importance.

bor:

nal La ory is
ENERG) z:nf;z z;“sc'h'z ,svg' iborsory
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HAN IS SLOW: TWEAKING THE NETWORK TO ACCELERATE TRAINING

Doc Embedding > Softmax
| Pubmed [
) 7 6 63 Convolutional Multihead Target Attention ]
Naive Bayes 0.25 f W
t Elementwise Multiply, Layer Norm g
-
. : 76.46 $ f )
Logistic Regression =
T 1 5 S Convolutional Multihead Convolutional Multihead 8
Self-Attention (ELU) Self-Attention (tanh) T
. 77.25 : : I
CNN Baseline i i ®
13ms, Thr | I I I | o
ﬂ
(2]
' ) ' 7 8 ) 45 +PE1 +PE2 +PE3 +PE4 +PE5 -
Hierarchical Attention Network [ [ [ [ [ <
111ms, 9hr
SE, SE, SE, SE, SEg ]
Hierarchical Convolutional 78.14 f
Attention Network 35m & 3hr Convolutional Multihead Target Attention n
1 | T
| | | | % Elementwise Multiply, Layer Norm E
Bidirectional Bidirectional Bidirectional Bidirectional Bidirectional 3 [y [y (o)
GRU/LSTM GRU/LSTM GRU/LSTM GRU/LSTM GRU/LSTM 3 [ [ a
T ] I I [ .,g Convolutional Multihead Convolutional Multihead T
Self-Attention (ELU) Self-Attention (tanh) —
WE, WE, WE, WE, WE, ®
F F o
| | -
o " o 11 | l l I | (2]
Computationally expensive!!! =
+PE, +PE, +PE, +PE, +PE, <
Gao, S., Ramanathan, A., in review (ACL) | | | | |
INERGY Ui e WE, | [ WE, | | WE || WE, | | WE Argonne &
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CAN THE H(C)AN BE USED ON OTHER TYPES OF DATA? E.G,,
PROTEIN ALIGNMENTS TO UNDERSTAND CO-EVOLUTIONARY

MODULES

» Predict “hotspots” across protein sequence databases

A Attention results for PDZ (PSD-95) for window size 9 and overalp 1 C Spatial location of annotated residues (blue) D Spatial location of attention residues(red)

Window size 19

LT -

o
©

Attention(black), Annotation Residues (Blue)
o o )
N ks >

3!
P fefrpeteioes
osition and Residue

o0;

B Highest attention window for PDZ (PSD-95) for window size 9 and overalp 1 .
10 gt Lalle F1 (sequences) | SCA AUC score | SCA F1 score
Family (sequences)
g“ Cadherin 0.568 0.817 0.546 0.670
PDZ (NCBI) 0.715 0.840 0.520 0.753
8
:° PDZ (PFAM) 0.660 0.827 0.520 0.753
g0.2
Tau 0.555 0.643 0.393 0.502
HSP70 0.510 0.771 0.553 0.709

Catanho, M., Gao, S., Ramanathan, A., Coleman, T. P, 2018 (submitted)
ENERGY D mantof Encray boratory A rgo nne °

managed by UChicago Argonne, LLC.
NATIONAL LABORATORY




SUMMARY

» Deep learning shows promise for automated information
extraction from unstructured pathology reports to increase
efficiency, data quality, and timeliness of cancer surveillance.

— Cross-reqistry performance was robust across all tasks.

= Current DL NLP Work:

— reportability de novo metastasis / recurrence
— Privacy preserving sharing of DL NLP models

50 Argonne &
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CANCER DISTRIBUTED (DEEP) LEARNING
ENVIRONMENT (CANDLE)

EXASCALE COMPUTING PROJECT




CANDLE: EXASCALE DEEP LEARNING TOOLS

Deep Learning Needs Exascale

= Automated model discovery

Hyper parameter optimization

Uncertainty quantification

Flexible ensembles

Cross-Study model transfer

Data augmentation

Synthetic data generation

Reinforcement learning

MENT OF _ Argonne National Laboratory is a
n orate

.S. Department of Energy laboratory
managed by UChicago Argonne, LLC.

v

Data Preparation

Training Inference

Batch Normalization

Data Augmentation —

Ensembles Source — Target Pairs

Scaling/Quantization

; i Drug Combinations
Domain Adaptation

l l
l l
( Outlier Removal ]
l l
l l

Concordance Processing

Confidence Scoring
Cross-validation

Model Discovery

¥
Outputs

Transfer Learning

[ Residual Networks }

uQ Accuracy / K-rank / R2

\ 4

Convolution

Factorial Design Feature importance

| |
[ Multitask Networks ]
[Population Based HPO]

Learning Curves Performance Analysis

4

https://github.com/ECP-CANDLE

— ,:\ EXASCALE
) E\(\C\)F’ =
AMD =

Unsupervised learning
coupled with multi-scale
molecular simulations

RAS

Semi-supervised
learning, scalable data Pathway
analysis and agent . .
) : Supervised learning

based simulations on .

Jati e d augmented by stochastic
population scale data pathway modeling and

g experimental design

Scope of CANDLE
Deep Learning
Treatment Drug
Strategy Response |

=7'NATION




* ECP-CANDLE GitHub Organization:
CANDLE PROJECT https://github.com/ECP-CANDLE

= CANDLE Python Library — make it easy to run on DOE Big Machines,
scale for HPO, UQ, Ensembles, Data Management, Logging, Analysis

= CANDLE Benchmarks — exemplar codes/models and data representing
the three primary challenge problems

* Runtime Software — Supervisor, Reporters, Data Management, Run Data
Base

» Tutorials — Well documented examples for engaging the community

» Contributed Codes — Examples outside of Cancer, including Climate
Research, Materials Science, Imaging, Brain Injury

* Frameworks — Leverage of TensorFlow, Keras, Horovod, PyTorch, etc.
= LL Libraries — CuDNN, MKL, etc. (tuned to DOE machines)

AAAAAAAAAAAAAAAA




CANDLE

SCOPE OF CANDLE WORKFLOWS

Batch Normalization
Data Augmentation
Outlier Removal
Scaling/Quantization

U Ul UC -

Ensembles Source — Target Pairs

UQ Samplin
Domain Adaptation Q Sampling

Confidence Scoring

Cross-validation

Transfer Learning

Residual Networks
Accuracy / K-rank / R2

Convolution

Factorial Design Feature importance

Multitask Networks

Learning Curves Performance Analysis

Cc

Population Based HPO

Argonne &




AURORA: HPC AND Al

> ExaFlops/s for HPC
>> Exaops/s for Al

Argonne &

NATIONAL LABORATORY

Architecture supports three types of computing
» Large-scale Simulation (PDEs, traditional HPC)
» Data Intensive Applications (scalable science pipelines)

» Deep Learning and Emerging Science Al (training and inferencing)

|||||




EXASCALE MACHINE TARGETS IN 2021/2022

= Aurora and Frontier are similar machines in that

arwbh =

~N o

Both are GPU accelerated x86 based nodes
~10,000 nodes each with CPUs + GPUs

>> 10,000 GPUs (DP > 1 EF, HP > 10 EF)

Big Memories, including NVM and solid state storage

Lots of I/0O bandwidth but < than the typical GB/GPU noticed by NVIDIA
as sweet spot

Caching data will be important for DL training

Framework optimization for each flavor of GPU will be important (AMD
vs Intel)

Both will have Cray OS environment, support for containers etc.
CANDLE is targeting both platforms

Argonne National Laboratory is a
U.S. Department of

§77% U.S. DEPARTMENT OF i
() ENERGY #5555 ki e Argonne &
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DEEP LEARNING USE CASES ON EXASCALE
PLATFORMS

= Contrary to expectations it will be rare to run a single deep learning
training model on the full system

* Individual Cancer problems as hard as they are are not (currently) big
enough to efficiently use the full machine

» So while some problems will use pipelining, model parallelism, data
parallelism to use perhaps 10% of the machine on one problem, the
bulk of the use cases are for some type of ensemble

* This is fine as we have more than enough volume to keep an
Exascale system busy

E»'c‘"é‘ U.S. DEPARTMENT OF _ Argonne National Laboratory is a
g B U.S. Department of Energy laboratory A
\2/ENERGY .0zt Fesgo Arsonne. LLC. rgonne
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CURRENT PLATFORMS FOR HYPERPARAMETER OPTIMIZATION
RELY ON SEQUENTIAL OPTIMIZATION TECHNIQUES

HyperSpace: Distributed
= Bayesian optimization, Bandit optimize  Parallel Bayesian Optimization

search processes |
» Hyperspace, instead seeks to

— The number of samples required tc  10CUS on the search space:
» Parallelism to exploit the statistical

optimization procedure is scales e»>
di . in 2D where D is N structure of the search space
|menS|on§, as in 2=, _ * Reveal partial dependencies across
— Forgotten in the recent excitement parameter spaces

* Build many surrogate

N. Srinivas, A. Krause, S. M. Kakade, and M. W. Seeger. Gaussian pr funCt|OnS In para”el
abs/0912.3995, 2009. ° {Praye r}'

S. Grunewalder, J.-Y. Audibert, M. Opper, and J. Shawe-Taylor. Regre
Thirteenth International Conference on Atrtificial Intelligence and Statis y

2010.

= Exponential scaling:

,'A'\ U.S. DEPARTMENT OF _ Argonne National Laboratory is a 4
ég;n ENERGY U.S. Department of Energy laboratory Argon ne é
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HYPERSPACE: PARALLEL EXPLORATION OF
LARGE SEARCH SPACES

4 \ 1. Define the bounds of each hyperparameter search
space.

2. Divide each search space bound into two nearly equal
sub-bounds with overlap ¢, where {p e R |0 < ¢ < 1}.

3. Create all possible combinations of hyperparameter sub-
bounds to form 2P search spaces (hyperspaces) where D
is the number of model hyperparameters.

4. Run Bayesian optimization over each hyperspace in
parallel

M. Todd Young, J. D. Hinkle, R. Kannan, A. Ramanathan, HyperSpace: Massively Parallel Bayesian
Optimization, Workshop on High Performance Machine Learning, 2018, Lyon, France

>
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HYPERSPACE CAN OPTIMIZE MANY DIFFERENT ML/DL

9x1

NMF " spoamic Gradient Boosted " syt “ICNN o
2 pq rq m eters ' '5‘;"';;["25:(\?\29 5x10° Reg ress I o n _:_ acyi:iet;)::cr:ize 3% 10° “7 pa rq m e‘l'e rs + ic;:i;;);;:z\m
| 7 parameters |

u ] o}
T © ©
8 . 8
c I 4x10 E

&£
% o -
X X S
=
€ £ £
S € €

10°
3x10°
—_—
2 4 6 8 10 12 14 0 0 20 3 20 %0 0 10 20 30 40 50
Number of calls n Number of calls n Number of calls n

HyperSpace can effectively scale across supercomputing resources to reveal how models perform under
many unique hyperparameter configurations.
« Discovers regions in the hyperparameter search space where models perform well and where
they perform poorly
« Finds families of solutions where various settings of hyperparameters perform equally well
« Opens the possibility of meta learning for hyperparameter optimization (future direction)

I M. Todd Young, J. D. Hinkle, R. Kannan, A. Ramanathan, HyperSpace: Massively Parallel Boyesi%
icago Argonne, LLC. Optimization, Workshop on High Performance Machine Learning, 2018, Lyon, FronceAl’gonne
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PARALLEL EXPLORATION OF LARGE SEARCH SPACES WORKS
BETTER THAN RANDOM/ SEQUENTIAL BASED OPTIMIZATION

HyperSpace Random search SMBO

AAAAAAAAAAAAAAAAAA




HOW ARE WE USING LARGE-SCALE COMPUTING?

 Deep Sweeps on Features/Feature Combinations
— Recently ran 16K model jobs on Summit (Pilot1)

Hyperparameter Optimization (full machine runs)
— Tuning model settings (Big runs on Cori, Theta, Summit, Titan)

Neural Architecture Search (Model Discovery)
— Big runs on Theta (SC19 Paper)

Hierarchical “LOOCV” Cross Validation Study (Exascale CP)

— Bayesian approach to online learning (accelerated convergence)

Data Augmentation and Generative Networks
— Exploring strategies for “Low Data” learning

Uncertainty Quantification
— Bootstrapping, parameter sweeps

Data Scaling Studies (learning curve estimates)
— Accuracy and Error as a function of data scale

AAAAAAAAAAAAAAAAAA 62



BYOM! BRING YOUR OWN MODELS ...

= CANDLE Hackathons:
— Nov 11-15 at Argonne

= Goals:
— enable one to build CANDLE compliant code for your models
— test runs on Theta (current supercomputer @ Argonne), Summit (ORNL), and
other test platforms
— have fun!

= What to bring?
— bring your models in either Keras/Tensorflow, Pytorch (less supported
currently but can be built and supported)

= We are always looking for examples other than cancer datasets!
— Imaging, NGS, pharmacogenomics, neuroscience, structural biology, etc.

63 Argonne &
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THANK YOU!!!
QUESTIONS/COMMENTS?

U.S. DEPARTMENT OF _ Argonne National Laboratory is a
EN ERG U.S. Department of Energy laboratory r O n n e
managed by UChicago Argonne, LLC.
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