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DOE-NCI PARTNERSHIP: ENABLE THE MOST CHALLENGING MACHINE 
LEARNING PROBLEMS IN CANCER RESEARCH TO RUN ON THE MOST 
CAPABLE SUPERCOMPUTERS IN THE DOE

Large-Scale
Numerical 
Simulation

Scalable 
Data Analytics

Deep
Learning / 
Artificial 

Intelligence

CORAL 
Supercomputers

and Exascale Systems

Traditional
HPC

Systems

CANDLE: Cancer Deep 
Learning Environment



PRIMER ON DOE SUPERCOMPUTING FACILITIES
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LEADERSHIP IS NOT ONLY ABOUT 
COMPUTING
§ Hundreds of Petabytes Storage 

Systems
§ Large-scale data analysis and 

visualization 
§ World leading network 

interconnecting facilities 
(100 Gb/s ⟹ 1 Tb/s)

§ DOE invests more than $1Billion/yr
in the computing capabilities a the 
laboratories
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MATHEMATICS AND COMPUTER SCIENCE 
§ > 1000 Computer Scientists, 

Mathematicians and Statisticians at the 
laboratories

§ Expertise in 
– Modeling and Simulation of Complex 

Phenomena
– Mathematical Techniques
– Software for Scientific Computing
– Parallel Computing
– Machine Learning
– Data Analysis
– Data Mining 
– Uncertainty Quantification
– Verification and Validation
– Software Engineering



WORLD LEADING 
COMPUTATIONAL SCIENCE
§ Hundreds of Computational “X” Scientists at 

each Laboratory
§ Groups, Codes and Tools Spanning Many 

Disciplines Relevant to Precision Medicine
§ Comparative Genomics and Systems Biology, 

Biophysics, Microbiology, Proteomics, 
Mesoscale Modeling, Text and Image 
Analysis, Data Modeling and Data 
Integration, Predictive Modeling



OUTLINE
§ DOE-NCI Pilot Projects 

– Machine learning projects and their focus areas 
– Machine learning for Next Generation Sequencing and Drug Discovery

§ Overview of example models and their initial results

§ Overview of CANDLE Technology Stack
– Example workflows implemented on CANDLE
– Hyperparameter optimization
– What this workshop is all about? 
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DOE-NCI PILOTS 
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NCI-DOE PARTNERSHIP WILL EXTEND THE FRONTIERS 
OF PRECISION ONCOLOGY (THREE PROJECTS)
§ Cancer Biology 

– Molecular Scale Modeling of RAS Pathways
– Unsupervised Learning and Mechanistic 

models
– Mechanism understanding and Drug Targets 

§ Pre-clinical Models 
– Cellular Scale PDX and Cell Lines
– ML, Experimental Design, Hybrid Models
– Prediction of Drug Response

§ Cancer Surveillance 
– Population Scale Analysis
– Natural Language and Machine Learning
– Agent Based Modeling of Cancer Patient 

Trajectories
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Multi-modal experimental 
data, image reconstruction, 

analytics

Adaptive 
spatial 
resolution

Adaptive 
time 
stepping

High-fidelity subgrid modeling

RAS activation 
experiments at NCI/FNL

Experiments on nanodisc

CryoEM imaging X-ray/neutron 
scattering

Protein structure 
databases

Coarse-grain 
MD

Classical  
MD

Quantum 
MD

Granular RAS membrane 
interaction simulations

Atomic resolution sim of 
RAS-RAF interaction

Inhibitor target 
discovery

PILOT 2:  RAS PROTEINS IN MEMBRANES
New adaptive sampling molecular dynamics 

simulation codes

Predictive simulation and analysis of 
RAS activation 

Unsupervised deep 
feature learning

Mechanistic network 
models

Uncertainty 
quantification

Machine learning guided dynamic 
validation



PILOT 1: PATIENT DERIVED XENOGRAFT MODELS
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PILOT 1: PREDICTIVE MODELS FOR PRE-CLINICAL 
SCREENING

Cell Line 
Compound

Screens

Cell Line
Molecular

Assays

Cancer 
Genome

Atlas

PDX Features
(DNA, RNA, 

Images)

PDX 
Compound

Screens

Compound
Databases

Gene 
Expression
Omnibus

Cancer 
Pathway

Databases

Protein-
Protein 

Interactions

Cancer
Data

Commons

Hypotheses Formation and Mixed 
Modeling

Terabytes
Machine Learning Based Predictive 

Models

Uncertainty and Optimal Experiment 
Design 

Terabytes

Terabytes

Terabytes
Petabytes

Petabytes

Terabytes

Petabytes

Petabytes

Petabytes

Feature Engineering, Cross Validation, Scalable Compute on CORAL
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UQ Analysis, Model Selection, Model Improvement, Proposed Experiments

Integration of Mechanistic, Statistical and Inferential Modeling

SVM
Neural Networks
Bayesian Networks
Random Forest
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PILOT 3: AI TO SUPPORT NATIONAL 
CANCER SURVEILLANCE

SEER Cancer Information 
Resource

Pathology Molecular
Characterization

Initial 
Treatment

Subsequent 
Treatment

Survival 
Cause of Death 

Progression
Recurrence

Prospectively support development 
of  new diagnostics and treatments

Understand treatment and 
improve outcomes in the 

“real world” 

GenomeExposome

Demographics

Improve the effectiveness of cancer treatment in the “real world” through computing 



PILOT 3: POPULATION INFORMATION INTEGRATION, 
ANALYSIS AND MODELING

14



OVERVIEW OF MACHINE LEARNING CHALLENGES 
IN DOE-NCI PILOTS
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PILOT 1: OVERARCHING 
MODELING GOAL
A single model trained on data from 
many cancer samples,  many drugs 
that can predict drug response 
across wide range of tumors and 
drug combinations



MODELING CANCER DRUG RESPONSE

17

𝓡 = 𝑓(𝓣, 𝓓)

gene expression levels
SNPs
protein abundance
microRNA
methylation

IC50
AUC
GI50
% growth
Z-score

descriptors
fingerprints
structures
SMILES
dose

Drug (s)

→
Tumor

→

Response

𝓡 = 𝑓(𝓣, 𝓓1 , 𝓓2)

→



WHAT FEATURES TO USE FOR DRUGS 
AND TUMORS?
§ Tumors

– RNAseq
– SNPs/CNVs
– Protein Abundance

§ Drugs
– Descriptors
– Structures
– SMILES

§ Vector Embeddings
– AE/VAE
– Expression
– SMILES

Pilot 1



UNO-MT
DEEP 
MULTITASK
MODEL FOR
RESPONSE
PREDICTION



CAN WE BUILD MODELS THAT ARE 
PREDICTIVE OF DRUG RESPONSE?

Dose Independent, Top 6. Top21, cancers, Attention MLP (Means from 10-fold CV)

Top 6 Cancer Types
Precision Recall f1-score
0.917 0.790 0.837 Mordred, Lincs1000 (bin.3)
0.933 0.853 0.882 Dragon7, Lincs1000 (bin.3)
0.933 0.855 0.884 Dragon7, Lincs1000 (bin.1)

Top 21 Cancer Types
Precision Recall f1-score
0.95 0.927 0.935 Dragon7, Lincs1000 (bin.3)

(~6,200 features)

Pilot 1



SINGLE DRUG RESPONSE

Models are best of RF, LGB, GB, LR, etc.; features are RNAseq and D7 descriptors

Pilot 1

Top 21 Cancer Types 
in MD DI formulation

Multi-Drug “Pan cancer”



It seems that the advent of models that beat the power-law exponent —
that get more data efficient as they learn — might be an important 
empirical milestone on that path.

https://arxiv.org/pdf/1712.00409.pdf

LEARNING CURVE POWER LAW

NLP Learning Curves Image Classification Top6 Cancer Response



CAN WE BUILD MODELS 
THAT GENERALIZE ACROSS 
STUDIES?

Pilot 1



UNO-MT 







Analysis name R2 P-value (R2) 
Spearman rank 

correlation 
coefficient

P-value (Spearman 
rank correlation 

coefficient)
PDX-Only 0.064(0.031) 0.372(0.022)
CCLE-TL 0.042(0.016) 8.01E-02 0.355(0.013) 7.28E-02
gCSI-TL 0.100(0.016) 8.29E-03 0.389(0.017) 7.55E-02

NCI60-TL 0.102(0.013) 5.16E-03 0.407(0.016) 1.43E-03
CTRP-TL 0.092(0.019) 3.35E-02 0.415(0.013) 1.51E-04
GDSC-TL 0.110(0.017) 1.50E-03 0.419(0.013) 7.22E-05

Comparison on PDX Prediction Performance With 
and Without Transfer Learning

PDX-only is the analysis without transfer learning. -TL in analysis name indicates transfer learning from a CCL 
dataset.
• Mean (standard deviation) of prediction performance is evaluated through 10 times of 10-fold cross-validations on PDXs

• Four out of the five transfer learning analyses show a prediction performance statistically significantly better than that of
PDX-only analysis, evaluated by the p-value of t-test ≤ 0.05

Pilot 1



395,264
225,481

11,671
6,456

518

ACTIVE LEARNING SIMULATION
Pilot 1



SUMMARY
§ A suite of deep learning models that have been applied to drug response 

prediction:
– DL models show better predictive power
– More data à more predictive power!
– An active learning simulation demonstrates how much data we may 

ultimately need to have a single model that works across different types of 
cancers and different drugs

§ Uncertainty quantification across models (although not discussed) 
§ Consistent evaluation across multiple datasets and prediction tasks 



PILOT 2: OVERARCHING 
MODELING GOAL
Build unsupervised machine 
learning models to potentially steer 
molecular dynamics simulations 
towards “interesting states” 



A VARIATIONAL APPROACH TO ENCODE PROTEIN FOLDING 
WITH CONVOLUTIONAL AUTO-ENCODERS (CVAE)

31
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4 convolution layers 4 deconvolution layers

1. 64 filters, 3x3 window, 1x1 stride, RELU
2. 64 filters, 3x3 window, 1x1 stride, RELU
3. 64 filters, 3x3 window, 2x2 stride, RELU
4. 64 filters, 3x3 window, 1x1 stride, Sigmoid

Reduced 
dimension: 3
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D. Bhowmik, M.T. Young, S. Gao, A. Ramanathan, BMC Bioinformatics (2019)
Source code: http://ramanathanlab.org

Related work: 
Hernandez 17 arXiv, 
Doerr 17 arXiv

http://ramanathanlab.org/


CVAE REVEALS ”METASTABLE STATES” IN PROTEIN 
FOLDING…

32 MSM Builder Datasets, Pande group



WHERE TO SAMPLE NEXT?
IDEA: CONVERT FROM ‘TRAINING’ MODE TO ‘INFERENCE’ MODE…  
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NOVEL DATA POINTS IN THE LATENT SPACE 
ENABLE SAMPLING FOLDED STATES
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PUTTING TOGETHER A SCALABLE WORKFLOW
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MD Simulation 1
(OpenMM)

MD Simulation 2
(OpenMM)

MD Simulation K
(OpenMM)…

Data collection (trajectories + contact maps [.h5])

Simulation tasks Machine Learning/ Deep Learning tasks
Ex
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ut

io
n 

tim
e

CVAE training 1
(Tensorflow)

CVAE training 2
(Tensorflow)

CVAE training M
(Tensorflow)…

Choose best CVAE model for inference 

Hyperparameter optimization/ training

CVAE inference
(Tensorflow)

collect 100,000 conformations for training

MD Simulation 1
(OpenMM)

MD Simulation 2
(OpenMM)

MD Simulation K
(OpenMM)

Cluster  
conformational 

states 

novel
states

?

No

MD Simulation 
K+1

(OpenMM)

MD Simulation 
K+2

(OpenMM)

YesSpawn new trajectories with novel states

Terminate simulations

GPU 1 GPU 2 GPU K

iterate until new training 
cycle is needed or 
protein is folded

outlier 
detection



YES, WE CAN FOLD A PROTEIN… [CASE 1: FS-PEPTIDE] 
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VISUALIZATION CAPABILITIES: INTERACTING WITH INSIGHTS 
FROM DEEP LEARNING APPROACHES
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SUMMARY
§ Demonstration that deep learning interleaved with MD simulations can lead to 

productive trajectories:
– protein folding is one example
– refining MD simulations in the context of experimental data

§ Scaling issues with AI/DL integrated simulation workflows need new ways to think 
about performance:

– key challenge emerges from training times of AI/DL are ‘on par’ with simulation timescale
– Effective performance metric: ratio of the time taken to solution (e.g., achieving RMSD of 0.3 Å

to the native state) of application with and without learning

§ New hardware/software needs for AI/DL coupled MD workflows:
– Streaming analytics 
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CANCER PATHOLOGY REPORT PROCESSING 
PIPELINE

NCI SEER 
Database

PathologistPatient
Diagnosis by a pathologist analyzing tissue 

specimen from patient

Surgical Pathology report

Regional cancer registries collect case information 
and aggregate for NCI SEER database

Certified Tumor 
Registrar

CTR at a cancer registry reviews complete patient 
medical record + path report

Registry PatientID Record No. Tumor No. Primary Site Source Section Relevant text Primary site 
category

Primary site 
code

KY 114431 3 Breast Final diagnosis Mammary 
carcinoma

Breast C50.9 
Breast,NOS

KY 118420 5 Breast Final diagnosis BREAST
PRIMARY

BREAST C50.9 Breast, 
NOS

SE 0084621 500713999 01 Lung Final diagnosis Lung, right 
lower lobe

lung C34.3 lower 
lobe, lung

Integration with structured data 
from Electronic medical records 

for patients



NCI-SEER IS A PRIMARY DATA SOURCE… NEED 
TO MODERNIZE
• NEED

– Abstracting structured data from free-text 
pathology reports is critical for the national 
cancer surveillance program

• CHALLENGE
– Manual abstraction is time-consuming, costly, 

and not scalable

• GOAL
– Develop a scalable framework for automated 

information extraction from pathology reports



DATASETS USED FOR PRELIMINARY RESEARCH
Limited dataset of de-identified breast and lung cancer electronic 

pathology (e-path) reports from 5 different SEER registries

~2,500 breast and lung cancer de-identified e-path reports

Partially annotated for subsite, laterality, grade, behavior 

Large dataset of e-path reports from Louisiana Tumor Registry housed at 
the PHI enclave within ORNL

~267,000 reports from Louisiana Tumor Registry (2004-2017)

Gold standard for site, laterality, grade, behavior, histology derived from 
consolidated “Cancer/Tumor/Case” (CTC) records



EXPERIMENTAL PIPELINE
DATA PRE-PROCESSING

• Duplicate records
• Non-contradicting labels
• Incorrect organ 

annotations
• Small sample sizes
• Corpus curation

FEATURE REPRESENTATION

• TF-IDF
• Bag-of-graphs
• RAKE
• CHUNK
• GLOVE
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• Contextualize (keywords for 
topics of interest)

• Term identification
• Classification

MACHINE LEARNING (ML)
• Naïve Bayes (NB)
• Logistic Regression (LR)
• Random Forest (RF)
• Support Vector Machines (SVM)
• Extreme gradient boosting tree 

(Xgboost)

DEEP LEARNING (DL)
• Convolutional neural nets (CNN)
• Hierarchical Attention nets (HAN)
• Multi-task Deep neural net (MT-

DNN)

PERFORMANCE METRICS

• Precision (positive 
predictive value) / Recall 
(sensitivity) / F1 per class

• Macro / Micro scores 
(aggregate performance 
over all)

VALIDATION STRATEGIES

• K-fold cross validation (K-
fold)

• Leave-one-registry out 
(LORO)

• Leave-one-case-out per 
registry (LOO_R)



A ‘GENTLE’ INTRODUCTION TO CONVOLUTIONAL NETS 
(CNN) FOR TEXT

Meaning of convolution

Averaging neighboring pixels Taking differences between 
neighboring pixels

Given a document represented as a collection of words, how do we extract features automatically?

• Text is presented in the form of a document 
matrix – a sequence of word embedding vectors

• Multiple convolutional filters capture context 
along a document:

• Word lengths {3,4,5} are used to “slide” 
along the entire length

• Network learns to select context features in via 
max pooling

• Selected features are concatenated and fed 
though a fully connected layer where 
regularization occurs

• Output is finally a softmax classifier

“Deep Learning for Automated Extraction of Primary Sites from Cancer Pathology 
Reports,” IEEE Journal of Biomedical and Health Informatics [January 2018]



CNNS PERFORM BETTER IN BASIC INFORMATION EXTRACTION TASKS 
COMPARED TO CONVENTIONAL ML APPROACHES
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LAYERING AN RNN WITH ATTENTION… 
HIERARCHICAL ATTENTION NETWORK (HAN)

WE1 WE2

Bidirectional
GRU/LSTM

Bidirectional
GRU/LSTM

WE3 WE4 WE5

Bidirectional
GRU/LSTM

Bidirectional
GRU/LSTM

Bidirectional
GRU/LSTM

Attention Hidden Layer

Attention Softmax

LE1 LE2 LE3 LE4 LE5

Dot Product

Bidirectional
GRU/LSTM

Bidirectional
GRU/LSTM

Bidirectional
GRU/LSTM

Bidirectional
GRU/LSTM

Bidirectional
GRU/LSTM

Attention Hidden Layer

Attention Softmax

Document
Embedding

Dot Product

Dropout

Softmax (Classification)

W
ord H

ierarchy
Line H

ierarchy

Tanh (Pretraining)

§ Word level embedding:
– capture important words in a sentence 
– Output: sentence embedding weighted based 

on word occurrence/ co-occurrence most 
relevant for classification task

§ Sentence level embedding:
– capture important sentences within a 

document
– Output: weighted sentence embedding based 

on relevance for classification task
§ Final document embedding is fed into classification 

Hierarchical Attention Networks for Information Extraction from Cancer 
Pathology Reports,” Journal of American Medical Informatics Association 
[appeared online, Nov 2017] 



HAN PERFORMS BETTER IN BASIC INFORMATION EXTRACTION 
TASKS COMPARED TO CONVENTIONAL ML APPROACHES
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INTERPRETING WHAT CNNS AND HANS 
LEARNED FROM EPATH REPORTS

HANs interpret context based on most important 
words in a sentence à sentences à document. 
Neighboring words/sentences provide overall 
importance.

CNNs blindly associate context with importance 
based on how often words occur in its 
neighborhood. Moving along a row, these words 
may not always capture the required clinical context.

CNN HAN



HAN IS SLOW: TWEAKING THE NETWORK TO ACCELERATE TRAINING

Computationally expensive!!!
Gao, S., Ramanathan, A., in review (ACL)

Pubmed

Naïve Bayes 76.63
--, 0.2s

Logistic Regression 76.46
--, 15s

CNN Baseline 77.25
13ms, 1hr

Hierarchical Attention Network 78.45
111ms, 9hr

Hierarchical Convolutional
Attention Network

78.14
35ms, 3hr



CAN THE H(C)AN BE USED ON OTHER TYPES OF DATA? E.G., 
PROTEIN ALIGNMENTS TO UNDERSTAND CO-EVOLUTIONARY 
MODULES

§ Predict “hotspots” across protein sequence databases

Figure 5: HANprot results for PDZ, using window size of 9 and overlap of
1. (A) Attention scores for each residue are plotted (black line). Blue bars
represent annotated binding residues. Red line indicates attention thresh-
old, given by the values above one standard deviation of the mean of the
sequence’s attention score (blue bars). (B) In addition to scoring residues
based on the attention response or importance (black line), HANprot’s second
hierarchy also scores windows, or motifs, within the sequence. The window
with highest attention score is highlighted with red bars. (C) In the 1BE9
PDZ structure (yellow), annotated database residues are shown in blue. (D)
Attention residues are shown in red.
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Figure 5: HANprot results for PDZ, using window size of 9 and overlap of
1. (A) Attention scores for each residue are plotted (black line). Blue bars
represent annotated binding residues. Red line indicates attention thresh-
old, given by the values above one standard deviation of the mean of the
sequence’s attention score (blue bars). (B) In addition to scoring residues
based on the attention response or importance (black line), HANprot’s second
hierarchy also scores windows, or motifs, within the sequence. The window
with highest attention score is highlighted with red bars. (C) In the 1BE9
PDZ structure (yellow), annotated database residues are shown in blue. (D)
Attention residues are shown in red.
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Table A: AUC and F1 scores for all protein domains analyzed in this
word (full sequence method). Bold values are the highest for each category
(AUC/F1).

9

Catanho, M., Gao, S., Ramanathan, A., Coleman, T. P., 2018 (submitted)



SUMMARY
§Deep learning shows promise for automated information 

extraction from unstructured pathology reports to increase 
efficiency, data quality, and timeliness of cancer surveillance.
– Cross-registry performance was robust across all tasks. 

§ Current DL NLP Work: 
– reportability de novo metastasis / recurrence
– Privacy preserving sharing of DL NLP models  

50



CANCER DISTRIBUTED (DEEP) LEARNING 
ENVIRONMENT (CANDLE)
EXASCALE COMPUTING PROJECT

51



CANDLE: EXASCALE DEEP LEARNING TOOLS
Deep Learning Needs Exascale
§ Automated model discovery
§ Hyper parameter optimization
§ Uncertainty quantification
§ Flexible ensembles
§ Cross-Study model transfer
§ Data augmentation
§ Synthetic data generation
§ Reinforcement learning

https://github.com/ECP-CANDLE



CANDLE PROJECT
§ CANDLE Python Library – make it easy to run on DOE Big Machines, 

scale for HPO, UQ, Ensembles, Data Management, Logging, Analysis
§ CANDLE Benchmarks – exemplar codes/models and data representing 

the three primary challenge problems 
§ Runtime Software – Supervisor, Reporters, Data Management, Run Data 

Base
§ Tutorials – Well documented examples for engaging the community
§ Contributed Codes – Examples outside of Cancer, including Climate 

Research, Materials Science, Imaging, Brain Injury
§ Frameworks – Leverage of TensorFlow, Keras, Horovod, PyTorch, etc.
§ LL Libraries – CuDNN, MKL, etc. (tuned to DOE machines)



SCOPE OF CANDLE WORKFLOWS

Data Preparation
Batch Normalization
Data Augmentation

Outlier Removal
Scaling/Quantization

Concordance 
Processing

Model Discovery
Residual Networks

Convolution 

Multitask Networks

Population Based HPO

Training Inference

Outputs

Ensembles

Domain Adaptation

Cross-validation

UQ

Source – Target Pairs 

UQ Sampling

Accuracy / K-rank / R2 

Feature importanceFactorial Design

Learning Curves

Confidence Scoring

Performance Analysis

Transfer Learning

CANDLE



AURORA: HPC AND AI
> ExaFlops/s for HPC
>> Exaops/s for AI

Architecture supports three types of computing
§ Large-scale Simulation (PDEs, traditional HPC)
§ Data Intensive Applications (scalable science pipelines)
§ Deep Learning and Emerging Science AI (training and inferencing)



EXASCALE MACHINE TARGETS IN 2021/2022
§ Aurora and Frontier are similar machines in that

1. Both are GPU accelerated x86 based nodes
2. ~10,000 nodes each with CPUs + GPUs
3. >> 10,000 GPUs (DP > 1 EF, HP > 10 EF)
4. Big Memories, including NVM and solid state storage
5. Lots of I/O bandwidth but < than the typical GB/GPU noticed by NVIDIA 

as sweet spot
6. Caching data will be important for DL training
7. Framework optimization for each flavor of GPU will be important (AMD 

vs Intel)
8. Both will have Cray OS environment, support for containers etc.
9. CANDLE is targeting both platforms 



DEEP LEARNING USE CASES ON EXASCALE
PLATFORMS
§ Contrary to expectations it will be rare to run a single deep learning 

training model on the full system

§ Individual Cancer problems as hard as they are are not (currently) big 
enough to efficiently use the full machine

§ So while some problems will use pipelining, model parallelism, data 
parallelism to use perhaps 10% of the machine on one problem, the 
bulk of the use cases are for some type of ensemble

§ This is fine as we have more than enough volume to keep an 
Exascale system busy



N. Srinivas, A. Krause, S. M. Kakade, and M. W. Seeger. Gaussian process bandits without regret: An experimental design approach. CoRR, 
abs/0912.3995, 2009.
S. Grunewalder, J.-Y. Audibert, M. Opper, and J. Shawe-Taylor. Regret Bounds for Gaussian Process Bandit Problems. In AISTATS 2010 -
Thirteenth International Conference on Artificial Intelligence and Statistics, volume 9, pages 273–280, Chia Laguna Resort, Sardinia, Italy, May 
2010.

CURRENT PLATFORMS FOR HYPERPARAMETER OPTIMIZATION 
RELY ON SEQUENTIAL OPTIMIZATION TECHNIQUES 

§ Bayesian optimization, Bandit optimization, and others are usually sequential 
search processes

§ Exponential scaling: 
– The number of samples required to bound our uncertainty about the 

optimization procedure is scales exponentially with the number of search 
dimensions, as in 2D, where D is number of dimensions [1, 2]. 

– Forgotten in the recent excitement of Bayesian optimization.

• Hyperspace, instead seeks to 
focus on the search space:

• Parallelism to exploit the statistical 
structure of the search space

• Reveal partial dependencies across 
parameter spaces

• Build many surrogate 
functions in parallel

• {Prayer}!

HyperSpace: Distributed 
Parallel Bayesian Optimization



HYPERSPACE: PARALLEL EXPLORATION OF 
LARGE SEARCH SPACES 

1. Define the bounds of each hyperparameter search 
space.

2. Divide each search space bound into two nearly equal 
sub-bounds with overlap ɸ, where {ɸ ∈ ℝ | 0 ≤ ɸ ≤ 1}. 

3. Create all possible combinations of hyperparameter sub-
bounds to form 2/ search spaces (hyperspaces) where D 
is the number of model hyperparameters.

4. Run Bayesian optimization over each hyperspace in 
parallel

M. Todd Young, J. D. Hinkle, R. Kannan, A. Ramanathan, HyperSpace: Massively Parallel Bayesian 
Optimization, Workshop on High Performance Machine Learning, 2018, Lyon, France



HYPERSPACE CAN OPTIMIZE MANY DIFFERENT ML/DL 
APPROACHES

HyperSpace can effectively scale across supercomputing resources to reveal how models perform under 
many unique hyperparameter configurations.

• Discovers regions in the hyperparameter search space where models perform well and where 
they perform poorly

• Finds families of solutions where various settings of hyperparameters perform equally well
• Opens the possibility of meta learning for hyperparameter optimization (future direction)

M. Todd Young, J. D. Hinkle, R. Kannan, A. Ramanathan, HyperSpace: Massively Parallel Bayesian 
Optimization, Workshop on High Performance Machine Learning, 2018, Lyon, France

NMF 
2 parameters

Gradient Boosted 
Regression 
7 parameters

CNN
7 parameters



PARALLEL EXPLORATION OF LARGE SEARCH SPACES WORKS 
BETTER THAN RANDOM/ SEQUENTIAL BASED OPTIMIZATION

HyperSpace Random search SMBO



HOW ARE WE USING LARGE-SCALE COMPUTING?
• Deep Sweeps on Features/Feature Combinations

– Recently ran 16K model jobs on Summit (Pilot1)
• Hyperparameter Optimization (full machine runs)

– Tuning model settings (Big runs on Cori, Theta, Summit, Titan)
• Neural Architecture Search (Model Discovery)

– Big runs on Theta (SC19 Paper)
• Hierarchical “LOOCV” Cross Validation Study (Exascale CP)

– Bayesian approach to online learning (accelerated convergence)
• Data Augmentation and Generative Networks

– Exploring strategies for “Low Data” learning
• Uncertainty Quantification

– Bootstrapping, parameter sweeps
• Data Scaling Studies (learning curve estimates)

– Accuracy and Error as a function of data scale
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BYOM! BRING YOUR OWN MODELS … 
§ CANDLE Hackathons:

– Nov 11-15 at Argonne
§ Goals:

– enable one to build CANDLE compliant code for your models 
– test runs on Theta (current supercomputer @ Argonne), Summit (ORNL), and 

other test platforms
– have fun!

§ What to bring? 
– bring your models in either Keras/Tensorflow, Pytorch (less supported 

currently but can be built and supported)
§ We are always looking for examples other than cancer datasets!

– Imaging, NGS, pharmacogenomics, neuroscience, structural biology, etc. 
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THANK YOU!!!
QUESTIONS/COMMENTS? 
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