NCI Imaging Data Commons

Keyvan Farahani, PhD

Center for Biomedical Informatics and Information Technology

farahani@nih.gov datascience.cancer.gov

Cancer Research Data Commons (CRDC)

A data science infrastructure to connect repositories, analytical tools, and knowledge bases

- Virtual, expandable, secure research infrastructure
- Storage and elastic compute
- Analysis, sharing, and archival of results
- Cross-domain analysis of large datasets

The Cancer Research Data Commons (CRDC)

REPOSITORIES

Cancer Data Service (CDS)

Store and share NCI-funded data that are not hosted elsewhere to further advance scientific discovery across a broad range of research areas.

Clinical Trial Data Commons (CTDC)

Store and share data from NCI Clinical Trials. The resource is expected to launch in 2020.

Genomic Data Commons (GDC)

Share, analyze, and visualize harmonized genomic data, including TCGA, TARGET, and CPTAC.

Imaging Data Commons (IDC)

Share, analyze, and visualize multi-modal imaging data from both clinical and basic cancer research studies

Integrated Canine Data Commons

Share data from canine clinical trials, including the PRE-medical Cancer Immunotherapy Network Canine Trials (PRECINCT) and the Comparative Oncology Program.

Proteomic Data Commons (PDC)

Share, analyze, and visualize proteomic data, such as CPTAC and The International Cancer Proteogenome Consortium (ICPC).

INFRASTRUCTURE

Cancer Data Aggregator (CDA)

Enables users to query and connect data distributed across the CRDC for integrative analysis.

Center for Cancer Data Harmonization (CCDH)

Provides semantic services and tools that facilitate interoperability of data across CRDC.

Data Commons Framework (DCF)

Provides secure user authentication and authorization and permanent digital object identifiers for data objects.

CLOUD RESOURCES

Broad Institute FireCloud

Access NCI-funded datasets TARGET and TCGA along with a rich collection of other datasets and collaborative projects that are part of the biomedical ecosystem. Run analysis tools at scale and collaborate securely on a scalable cloud environment.

ISB Cancer Gateway in the Cloud (ISB-

Access data sets using fully interactive webbased applications, including BigQuery, which is hosted on Google Cloud Platform.

Seven Bridges Cancer Genomics Cloud (SB-CGC)

Explore and analyze large datasets alongside secure and scalable analytical resources for large-scale computational research.

NCI Imaging Data Commons (IDC)

Cloud resource that connects researchers with:

- Cancer image collections
- Robust infrastructure with imaging data, metadata and experimental metadata from disparate sources
- Resources for searching, identifying and viewing images
- Additional data types in other CRDC nodes
- Connectivity to NCI Cloud Resources for imaging and multi-modal cloud computations

Implementation:

- Google Cloud Platform
- OHIF viewer
- Non-restrictive Open Source
- DICOM as prime standard

Production release: September 2021

DOI: 10.1158/0008-5472.CAN-21-0950

https://portal.imaging.datacommons.cancer.gov/

The NCI Cloud Resources

Three resources connecting NCI data and compute in the cloud

- Access to large cancer data sets without need to download
- Access to workspaces, analysis tools, and pipelines
- Ability for researchers to bring their own data and tools

- Access and analyze data from a dozen genomics, proteomics, and imaging datasets without downloading
- Upload your data to the cloud

- Perform large scale analysis using the elastic compute of commercial cloud platforms
- Upload your tools to the cloud, create your own workflows

- dbGaP-authorized users can connect to controlled access datasets
- Systems meet strict Federal security guidelines

Why Three Cloud Resources?

Cancer Cloud Resources

IDC AI workflow

Courtesy of Hugo Aerts (BWH)

IDC's potential for imaging Al

- IDC can play a central role by providing data to <u>enable end-to-end</u> <u>transparent and reproducible AI pipelines</u> for cancer imaging.
- Easy access to high quality, <u>standardized</u>, <u>de-identified imaging and</u>
 <u>metadata</u> in IDC that can be combined with fully reproducible AI pipelines
 in cloud based environments.
- Empower AI researchers to <u>reproduce published results</u>, <u>provide materials</u> <u>for research</u>, <u>training and education purposes</u>, as well as guide overall developments of the IDC platform.
- Selected AI use cases for several clinical scenarios in cancer imaging are being developed by IDC and collaborators to highlight these capabilities.

IDC Use Cases

- Essential utilization of IDC/CRDC infrastructure and standards toward:
 - Development of novel AI/ML tools:
 - Applications in imaging detection, diagnosis, and treatment planning/monitoring
 - Promote transparency, reproducibility and reusability

Cloud-credits are available to support novel developments

Acknowledgements

Mass General Brigham

Ron Kikinis

Andrey Fedorov

Hugo Aerts

Markus Hermann

Institute for Systems Biology

William Longabaugh

General Dynamics IT

David Pot

Isomics

Steve Piper

Pixelmed

David Clunie

Fredrick National Laboratory for Cancer Research

Todd Pihl

Ulli Wagner

Center for Biomedical Informatics and Information Technology (NCI)

Tanja Davidsen

Allen Dearry

farahani@nih.gov

datascience.cancer.gov

