

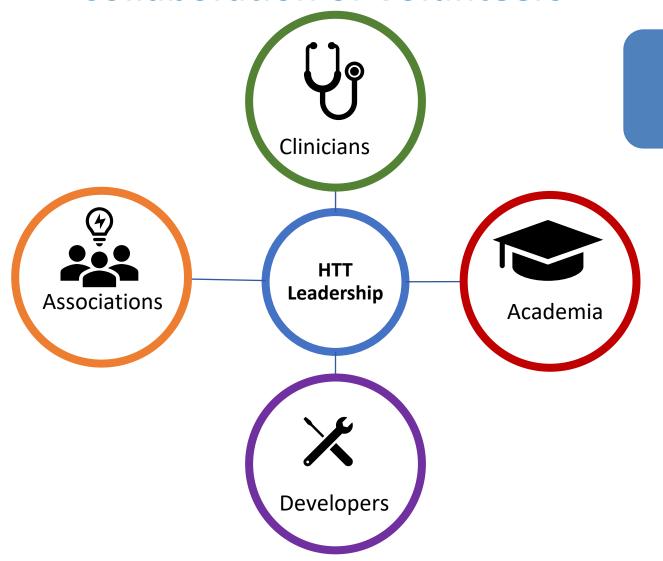
PATHOLOGIST AGREEMENT FROM QUANTITATIVE MEASUREMENTS: A PILOT STUDY

Brandon D. Gallas And Katherine Elfer

Division of Imaging, Diagnostics, Software Reliability

Office of Science and Engineering Laboratories
Center for Devices and Radiological Health
U.S. Food and Drug Administration

Collaborators


- Mohamed Amgad, MD
 - Department of Pathology, Northwestern University
- Kim Blenman, PhD
 - Yale School of Medicine
- Weijie Chen, PhD
 - FDA/CDRH/OSEL/DIDSR
- Sarah Dudgeon, MPH
 - CORE Center for Computational Health Yale-New Haven Hospital
- Rajarsi Gupta, MD/PhD
 - Stony Brook Medicine Dept of Biomedical Informatics
- Matthew Hanna, MD
 - Memorial Sloan Kettering Cancer Center
- Steven Hart, PhD
 - Department of Health Sciences Research, Mayo Clinic
- Evangelos Hytopoulos, PhD
 - iRhythm Technologies Inc
- Denis Larsimont, MD
 - Department of Pathology, Institut Jules Bordet
- Xiaoxian Li, MD/PhD
 - Emory University School of Medicine

- Anant Madabhushi, PhD
 - Case Western Reserve University
- Hetal Marble, PhD
 - Massachusetts General Hospital/Harvard Medical School
- Roberto Salgado, PhD
 - Division of Research, Peter Mac Callum Cancer Centre, Melbourne, Australia; Department of Pathology, GZA-ZNA Hospitals
- Joel Saltz, MD/PhD
 - Stony Brook Medicine Dept of Biomedical Informatics
- Manasi Sheth, PhD
 - FDA/CDRH/OPQE/Division of Biostatistics
- Rajendra Singh, MD
 - Northwell health and Zucker School of Medicine
- Evan Szu, PhD
 - Arrive Bio
- Darick Tong, MS
 - Arrive Bio
- Si Wen, PhD
 - FDA/CDRH/OSEL/DIDSR
- Bruce Werness, MD
 - Arrive Bio

Collaboration of Volunteers

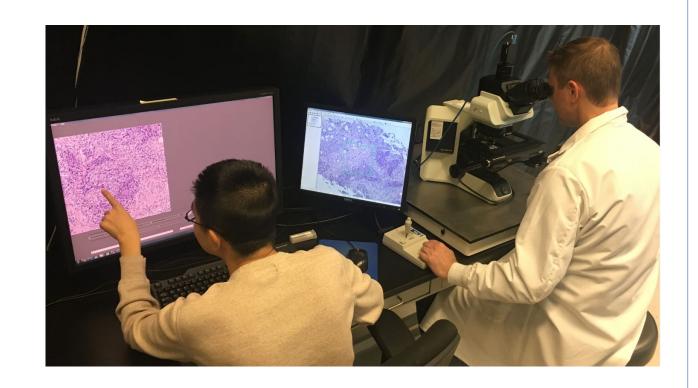
There is room for you!



Outline

- Overview of the HTT project
 - High-Throughput Truthing
 - Manuscript: http://arxiv.org/abs/2010.06995
- Introduce study materials and explore data collected
 - R data package: https://github.com/DIDSR/HTT
- Introduce mean-squared differences
 - LOA: Limits of agreement
- Summary

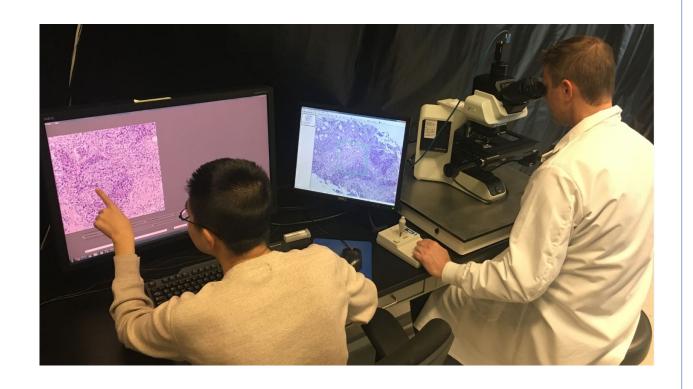
Digital web-based data-collection interface



Clinical Context and Relevance

Clinical context:

- Breast cancer
- Pathology Biomarker: Stromal Tumor Infiltrating Lymphocytes (sTILs)
- Clinical relevance of sTILs:
 - Prognostic for survival
 - Expected to inform patient management
 - Expected to reduce use of toxic chemotherapies
- Software as a medical device (SAMD)
 - Reduce burden on pathologist
 - Reproducible
 - Quantitative


Clinical Context and Relevance

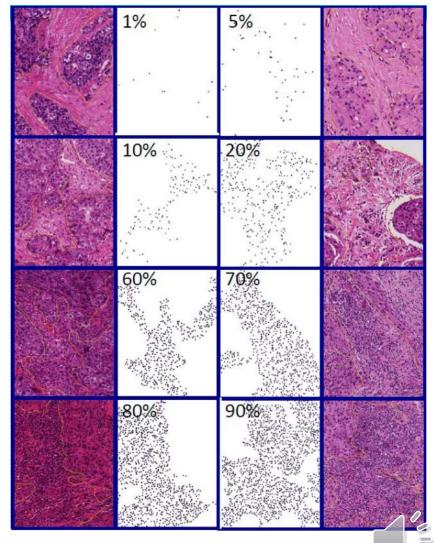
Deliverables

- Reference standard data from pathologists
- Methods to validate algorithms

- Pursue Qualification of Deliverables:
 - Medical Device Development Tool (MDDT) ... an FDA program

https://www.fda.gov/medical-devices/science-and-research-medical-devices/medical-device-development-tools-mddt

Standardized Evaluations of a Quantitative Biomarker

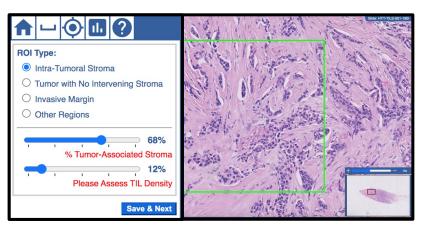

- Pathologist Evaluation
 - Density Estimates of percent stromal Tumor Infiltrating Lymphocytes (sTILs)

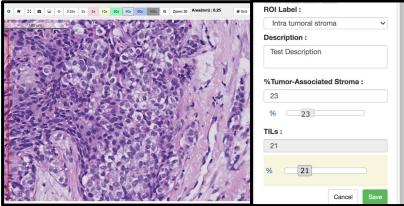
0% - 100%

Area of TILs in stroma

Area of stroma

• R. Salgado *et al.*, "The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: **recommendations** by an International TILs Working Group 2014," *Ann. Oncol.*, vol. 26, no. 2, pp. 259–271, Feb. 2015, doi: 10.1093/annonc/mdu450.

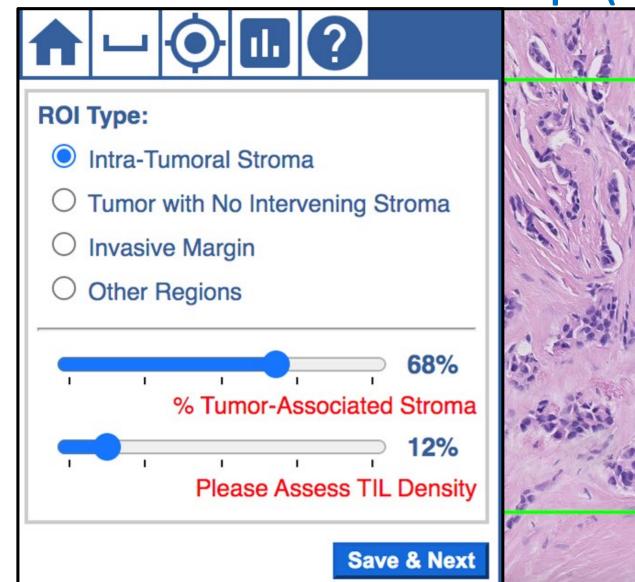


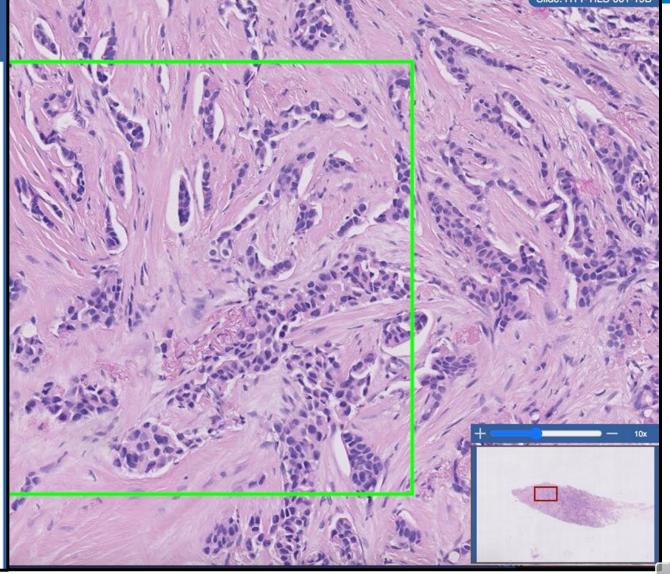

Evaluation Platforms



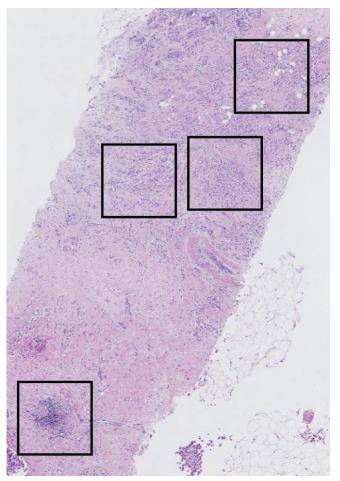
- Digital
 - caMicroscope
 - PathPresenter

- Microscope
 - eeDAP





caMicroscope (Digital)



FDA.gov

JSM 2021, Medical Devices and Diagnostics Speed Session, Gallas and Elfer, Pathologist Agreement

Pilot Study Materials

- 64 Hematoxylin & Eosin Slides
 - "40X" Imaging (0.23 um/pixel)

Pilot study:
No patient
information or
meta-data

- 10 ROIs per Slide (pre-selected by protocol)
 - 500 um x 500 um squares

- 640 ROIs Total
 - 8 batches of 8 slides

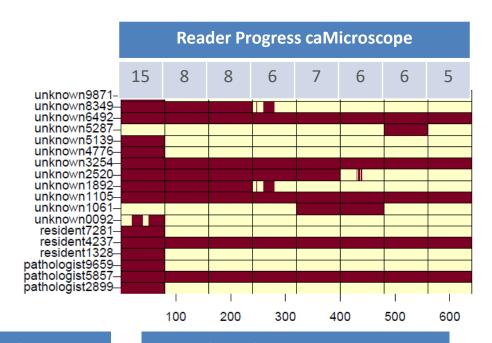
R Data Package: It's live!

- https://github.com/DIDSR/HTT
 - User manual on GitHub release page and via
 R help command

• Annotation data: pilotHTT

```
<u>caseID == ROI</u>
Encodes the image name
and the ROI info
```

```
> str(HTT::pilotHTT)
'data.frame': 7292 obs. of 18 variables:
$ batch
                    : Factor w/ 8 levels "FDA-HTT-batch001".
$ WSI
                    : Factor w/ 64 levels "HTT-TILS-001-03B.
$ caseID
                    : Factor w/ 640 levels "HTT-TILS-001-03B
                    : Factor w/ 27 levels "pathologist2899",
$ readerID
$ modalityID
                    : Factor w/ 3 levels "camic", "pathp",..:
$ score
                           NA 5 10 NA 5 5 1 5 NA NA ...
$ experience
                           100 100 100 100 100 100 100 100 1
$ experienceResident: num
                          100 100 100 100 100 100 100 100 1
$ labelROI
                    : Factor w/ 4 levels "Intra-Tumoral Stro
$ VTA
                     : logi FALSE TRUE TRUE FALSE TRUE TRUE
$ percentStroma
                          NA NA NA NA NA NA NA NA NA ..
$ densityTILs
                          NA 5 10 NA 5 5 1 5 NA NA ...
$ createDate
                     : POSIXct, format: "2020-02-18 21:48:38"
$ viewerWidth
                           NA NA NA NA NA NA NA NA NA
$ viewerHeiaht
                           NA NA NA NA NA NA NA NA NA
$ viewerMag
                     : num NA NA NA NA NA NA NA NA NA
                    : Factor w/ 3 levels "doVTA_caMicro_v1.0
$ task
$ inputFileName
                     : chr NA NA NA NA ...
```

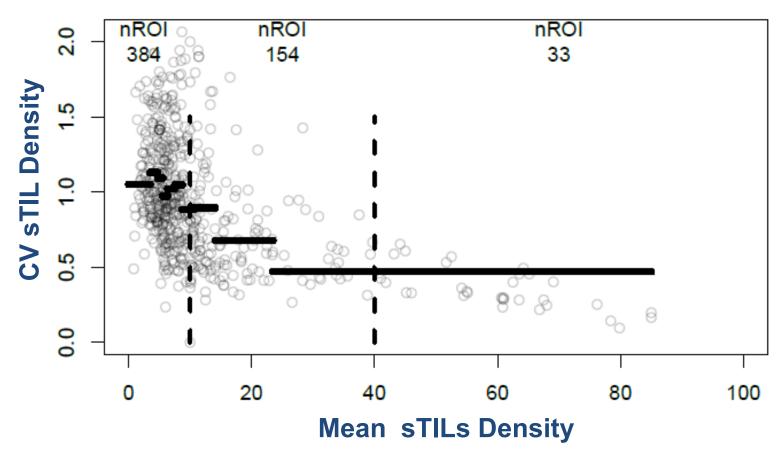

caseID	readerID [‡]	modalityID [‡]	labelROI	percentStroma [‡]	densityTlLs [‡]
HTT-TILS-001-11B.ndpi_x124700.2190_y17272.2190	unknown5139	camic	Other Regions	NA	NA
HTT-TILS-001-11B.ndpi_x112500.2190_y34683.2190	unknown5139	camic	Intra-Tumoral Stroma	NA	5
HTT-TILS-001-11B.ndpi_x124179.2190_y13060.2190	unknown5139	camic	Intra-Tumoral Stroma	NA	10
HTT-TILS-001-11B.ndpi_x127215.2190_y12508.2190	unknown5139	camic	Other Regions	NA	NA

JSM 2021, Medical Devices and Diagnostics Speed Session, Gallas and Elfer, Pathologist Agreement

R Markdown File: Demonstrate Data and Analyses

- Pathology Informatics Presentation
 - PDF: https://ncihub.org/groups/eedapstudies/wiki/Presentation2021:PathologyInformaticsSummitHTTproject
 - R Markdown: https://github.com/DIDSR/HTT/tree/main/inst/extra/20210505-PathologyInformatics
- Data Collected:
 - Each tick mark is an observation
 - Vertical lines partition the data by batch
- Hit target
 - 5 readers per ROI
 - Total observations: 7292
 - Total pathologists: 35
- Data collection continues online and in person

Total # Readers: 18

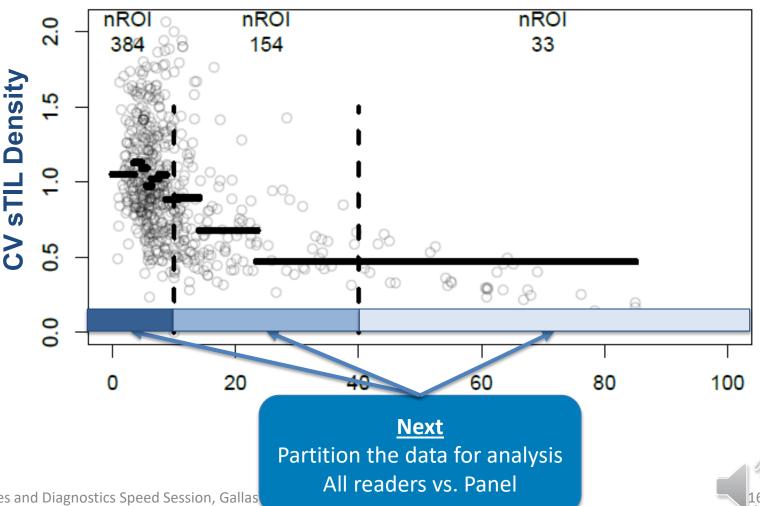

Total # Observations: 4986

CV: Coefficient of Variation = STD/Mean

- Each circle is one ROI
- Mean and CV are averages over all readers
- Horizontal lines:
 - Average CV in 10% bins of the data (57 ROIs)
- Vertical dashed lines:
 - "Clinical" bins
 - low (≤ 10%)
 - medium (>10% & \leq 40%)
 - high (>40%)

Coefficient of Variation (n=571, caMic)

CV: Coefficient of Variation = STD/Mean



Difficult for pathologists to quantitate scores, especially below 10

Standard deviation is not proportional to the mean

 Variance increases with the mean (not shown)

Coefficient of Variation (n=571, caMic)

FDA.gov

JSM 2021, Medical Devices and Diagnostics Speed Session, Gallas

Validation Data and Methods

Quantitative Agreement Endpoint:

 $MSD = Mean-Squared Difference \rightarrow square root \rightarrow Limits of Agreement$

Algorithm-pathologist agreement

$$MSD = E\left[\left(Y_{kl} - X_{jkl}\right)^2\right]$$

Score from SaMD

Score from pathologist *j*

Pathologist-pathologist agreement

$$MSD = E\left[\left(X_{j'kl} - X_{jkl}\right)^2\right]$$

Score from pathologists j and j'

Same case k and location l

Same case k and location l

Validation Data and Methods

Quantitative Agreement Endpoint:

 $MSD = Mean-Squared Difference \rightarrow square root \rightarrow LOA: Limits of Agreement$

Algorithm-pathologist agreement

$$MSD = E\left[\left(Y_{kl} - X_{jkl}\right)^2\right]$$

Score from SaMD

Score from pathologist *j*

$$MSD = E\left[\left(X_{j'kl} - X_{jkl}\right)^{2}\right]$$

$$MSD = var(X_{j'kl}, X_{jkl}) + E(X_{j'kl} - X_{jkl})^{2}$$

$$MSD = var(X_{j'kl}, X_{jkl})$$

$$LOA = 0 \pm 2 \sqrt{var(X_{j'kl}, X_{jkl})}$$

Same case k and location l

	Limits of Agreem	ent (Point Estimates)
	All Readers	Panel of Four
$0 \le scores \le 10$	18.3	12.4
10 < scores ≤ 40	38.0	27.0
40 < scores ≤ 100	66.2	62.6

- LOA accounts for
 - Reader and case variability
 - MRMC analysis: multi-reader, multi-case analysis
- LOA is reduced for the panel
- LOA increases with the score

	Limits of Agreem	ent (Point Estimates)
	All Readers	Panel of Four
$0 \le scores \le 10$	18.3	12.4
10 < scores ≤ 40	38.0	27.0
40 < scores ≤ 100	66.2	62.6

- Si Wen & Brandon Gallas (2021).
 Three-way Mixed Effect ANOVA to Estimate MRMC Limits of Agreement.
 - arXiv preprint <u>arXiv:2107.08891</u>
 - Submitted to Statistics in Biopharmaceutical Research.
 - GitHub Repo: https://github.com/SiWen314/ANOVA.MRMC.LOA

	Limits of Agreement (Point Estimates)	
	All Readers	Panel of Four
$0 \le scores \le 10$	18.3	12.4
10 < scores ≤ 40	38.0	27.0
40 < scores ≤ 100	66.2	62.6

Still need to

- Account for correlations between ROIs in an image
- Estimate the precision of LOA estimates

Summary

- We've provided an overview of this project
 - Dataset of pathologist annotations to validate an algorithm to evaluate sTIL density
 - Unique data collection methods, platforms, and materials
 - Explored the data
 - R data package on GitHub
 Reproducible and transparent science
 - Mean-Squared Difference endpoint

- Still need to ...
 - Account for correlations between ROIs in an image
 - Estimate the precision of LOA estimates
 - Explore non-parametric regression (ratio data)
 - Explore ranks-based correlation (ordinal data)
 - Explore binning the data, categorical agreement (nominal data)
 - Size the pivotal study

DIDSR/HTT (github.com)

Brandon.gallas@fda.hhs.gov

Thank you.

