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Innate Immunity and Inflammation

e Definitions



* |nnate Immunity: Immunity that is naturally present

and is not due to prior sensitization to an antigen; generally
nonspecific. It is in contrast to acquired/adaptive immunity.

Adapted from Merriam-Webster Medical Dictionary



* |nnate Immunity: Immunity that is naturally present

and is not due to prior sensitization to an antigen; generally
nonspecific. It is in contrast to acquired/adaptive immunity.

e |Inflammation: alocal response to tissue injury

— Rubor (redness)
— Calor (heat)
— Dolor (pain)

— Tumor (swelling)

Adapted from Merriam-Webster Medical Dictionary



“Innate Immunity” and
“Inflammation” are vague terms

e Specific cell types and molecules
orchestrate specific types of inflammation



“Innate Immunity” and
“Inflammation” are vague terms

e Specific cell types and molecules
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e Inflammation A # Inflammation B



“Innate Immunity” and “Inflammation”
can mean many things

e Specific cell types and molecules
orchestrate specific types of inflammation

* [Innate Immunity A # Innate Immunity B

e Inflammation A # Inflammation B

e Some immune responses promote cancer,
others suppress it



Innate Immunity and Inflammation

Functions:

e Rapid response to tissue damage

e Limit spread of infection

 |nitiate adaptive immune response (T, B)

* |nitiate tissue repair



Innate Immunity and Inflammation:
A Paper Cut

Adherence to epithelium

Janeway, Immunobiology, 7t Ed.
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Innate Immunity and Inflammation:
A Paper Cut

Local infection,
Adherence to epithelium penetration of Local infection of tissues
epithelium

Protection against infection
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chemokines, Phagocytes,
NK cells
Activation of macrophages
Dendritic cells migrate to
lymph nodes to initiate
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Innate Immunity and Inflammation:
A Paper Cut

Adherence to epithelium

Local infection,
penetration of
epithelium

Local infection of tissues

Adaptive immunity

blood vessel

B £ e a6

Protection against infection

Normal flora
Local chemical factors
Phagocytes
(especially in lung)

Wound healing induced
Antimicrobial proteins and
peptides, phagocytes, and

complement destroy
invading microorganisms

Activation of y:3 T cells?

Complement, cytokines,
chemokines, Phagocytes,
NK cells
Activation of macrophages
Dendritic cells migrate to
lymph nodes to initiate
adaptive immunity
Blood clotting helps limit
spread of infection

Infection cleared by specific
antibody, T-cell dependent
macrophage activation
and cytotoxic T cells

Janeway, Immunobiology, 7t Ed.




Innate Immunity and Inflammation

e Cells and Molecules



Innate Immune Molecules:
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Innate Immune Molecules:
Complement System

Recognize

e pathogens
e antibodies
e lectins

Cause

e pathogen clearance
e chemotaxis

* inflammation

Janeway, Immunobiology, 7t" Ed.




Innate Immune Molecules:
type | IFN(-at, )

* Induced by infection/damage
e Antiviral/Antiproliferative
* Increase innate and adaptive immunity

* Cause inflammation



Innate Immune Cells

pluripotent hematopoietic stem cell

Bone marrow

common common granulocyte/ megakaryocyte/
lymphoid myeloid macrophage erythrocyte
progenitor progenitor progenitor progenitor
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Janeway, Immunobiology, 7t Ed.
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Innate Immune Cells
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Innate Immune Cells: granulocytes

Recognize Cause
e pathogens e pathogen clearance
e antibodies * inflammation

Janeway, Immunobiology, 7t Ed.



Innate Immune Cells: phagocytes

-

function

Y [ oo Recognize
ks s ' . ) 0

e pathogens
e antibodies

Cause

e pathogen clearance
e adaptive immunity
* inflammation

Janeway, Immunobiology, 7t Ed.



Innate Immune Cells:
NK, NKT and yo T cells

Recognize

e pathogens

o stressed cells
* “altered self”

Cause

e pathogen clearance

e stressed/abnormal cell clearance
e inflammation
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Danger signals start inflammation
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Receptors sense Danger: Pathogens
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Receptors sense Danger: Damage
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Innate Immunity and Inflammation

* Innate Immunity and Inflammation in Cancer



Innate Immunity and Inflammation
In Cancer

e Qutcomes vary:
- Promote cancer (Bad inflammation)

- Suppress cancer (Good inflammation)



Innate Immunity and Inflammation

e Bad Inflammation



Bad Inflammation Causes Cancer

DANGER

cellular damage caused by
e pathogens

* physical damage

e chemicals

e UV

* etc



IMMUNE RESPONSE

DANGER =——> |NFLAMMATION
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COLLATERAL DAMAGE

IMMUNE RESPONSE
> R = |NFLAMMATION



COLLATERAL DAMAGE

IMMUNE RESPONSE
INFLAMMATION

—



COLLATERAL DAMAGE

e IMMUNE RESPONSE
Rt Ao INFLAMMATION



COLLATERAL DAMAGE

CHRONIC IMMUNE RESPONSE

INFLAMMATION



CHRONIC
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CHRONIC

COLLATERAL DAMAGE
CANCER
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INFLAMMATION



CHRONIC
COLLATERAL DAMAGE
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CHRONIC

COLLATERAL DAMAGE
CANCER
i! ii CHRONIC
{CHRONIC; IMMUNE RESPONSE

INFLAMMATION

cancer: a “never-healing wound”

Dvorak , NEJM 1986



Inflammation can Promote Cancer:
collaboration with K-ras mutation

no
smoking

4 cigarettes
per day

K-ras mutation
&
normal myeloid cells

Takahashi et al., Cancer Cell 2010



Inflammation can Promote Cancer:
collaboration with K-ras mutation
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K-ras mutation K-ras mutation

& +
normal myeloid cells IKK/~ myeloid cells

Takahashi et al., Cancer Cell 2010



Inflammation can Promote Cancer:
collaboration with K-ras mutation

no
smoking

4 cigarettes
per day

K-ras mutation K-ras mutation

* | NF-«xB
& "' + J PSTAT3

normal myeloid cells KK/~ myeloid cells « V16
e ¢ neutrophils

e ¢ angiogenesis

Takahashi et al., Cancer Cell 2010



Inflammation can Promote Cancer:
collaboration with HPV E6/E7 oncogene
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Tumors can induce bad inflammation

Apoptotic Death of CD8™ T Lymphocytes After Immunization:
Induction of a Suppressive Population of Mac-1"/Gr-1" Cells"

Te 2. T® T + T T a s ke C ate

Vincenzo Bronte,”* Michael Wang,” Willem W. Overwijk,* Deborah R. Surman,*
. . + o ats . . 3-:-
Federica Pericle,” Steven A. Rosenberg,* and Nicholas P. Restifo”*

The Journal of Immunology, 1998, 161: 5313-5320.




Tumors can induce bad inflammation

Spleen (no tumor)
10%
108

102

Spleen (subcut. tumor)

104

Bronte et al., J. Immunol. 1999



Tumors can induce bad inflammation

Maturation from Accumulation in
precursor cells peripheral organs

%  Mature APC

. Differentiation
Function in mature cells

Ugel et al., Curr. Opin. Pharmacol. 2010



Tumors can induce bad inflammation
Oncogenic STAT3

Extrinsic pathway
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Yu et al., Nat. Rev. Cancer 2009



Tumors can induce bad inflammation
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Mutations can Drive Bad Inflammation
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Sumimoto et al., J. Exp. Med. 2006



Mutations can Drive Bad Inflammation
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Mutations can Drive Bad Inflammation

Mutated BRAF = tumor
cells produce

bad, imunosuppressive
cytokines

v
promote expression of

immunosuppressive
molecules

melanoma 1: reduced proliferation
tumor 2: functional inhibition

Khalili et al., Clin. Cancer Res. 2012



Inflammation and Cancer:
A Vicious Cycle

/ MUTATION

CANCER

AN

INFLAMMATION



Classic Hallmarks of Cancer

Tissue invasion

angiogenesis

Mantovani et al., Nature 2009
Hanahan & Weinberg, Cell 2000



Inflammation is (now) a Classic
Hallmark of Cancer

An inflammatory
microenvironment

Tissue invasion
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An inflammatory
microenvironment

Tissue invasion
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Innate Immunity and Inflammation

e Good Inflammation



Good vs. Bad Inflammation
In Cancer

Immunity, Inflammation, and Cancer

Sergei |. Grivennikov,! Florian R. Greten,2 and Michael Karin!-* Cell 740, 883-899,. March 19, 2010

Cancer and Inflammation: Promise for Biologic Therapy

Sandra Demaria® Eli Pikarsky,v Michael Karin [ Lisa M. Coussens,§ Yen-Ching Chen,ll
Emad M. EI-Omar,¥ Giorgio Trinchieri#t Steven M. Dubinett,** Jenny T. Mao, 71 Eva Szabo, [}
Arthur Krieg,§§ George J. Weiner ||l Bernard A. Fox,4Y George Coukos#H# Ena Wang ***

Robert T. Abraham,t 7 v Michele Carbone, [}

| Immunother » Volume 33, Number 4, May 2010



IFN-y Suppresses Human Tumor
Development

Multiple cutaneous squamous cell carcinomas In

a patient with interferon 7y receptor 2
(IFNYR2) deficiency

Toyoda et al., J. Med. Genetics 2010



IFN-y Suppresses Human Tumor
Development

Multiple cutaneous squamous cell carcinomas In

a patient with interferon 7y receptor 2
(IFNYR2) deficiency

At 17 years of age, the patient developed multifocal Squamous Cell Carcinomas
on the face and both hands. Despite local tumour excision, multiple lesions
occurred and the patient died at 20 years of age of disseminated SCC. Inherited

disorders of IFN-y—mediated immunity may predispose patients to SCC.

Toyoda et al., J. Med. Genetics 2010



Human Immune System can Suppress
Existing Tumors for Years

1982: patient with primary, resected melanoma

1997: declared disease-free and “cured”

1998: died of brain hemorrhage, donated kidneys

2000: - kidney recipient 1 died of metastatic donor melanoma
- kidney recipient 2 taken off immunosuppression; start IFN-o
- kidney recipient 2 rejects kidney and melanoma

MacKie et al., NEJM 2003



Human Immune System can Suppress
Existing Tumors for Years

1982: patient with primary, resected melanoma
1997: declared disease-free and “cured”

1998: died of brain hemorrhage, donated kidneys
2000: - kidney recipient 1 died of metastatic donor melanoma
- kidney recipient 2 taken off immunosuppression; start IFN-o
- kidney recipient 2 rejects kidney and melanoma

MacKie et al., NEJM 2003



Post-transplant Immunosuppression
Increases Cancer Incidence
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Vajdic & Van Leeuwen, Int. J. Cancer 2009



Type | IFNs Suppress Growth of
Transplanted Tumors
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IFN-0. treatment enhances anti-
cancer vaccination
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CpG Causes Tumor Inflammation and
Intratumoral T cell Accumulation

Intratumoral PBS Intratumoral CpG Intravenous CpG

Lou et al., J. Immunother. 2011



CpG Causes Tumor Inflammation and
Intratumoral T cell Accumulation
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Choice of vaccine adjuvant
controlsT cell trafficking to tumor

gpl100/ gp100/
aCD40/imig/IL-2 aCD40/imig/IL-2

T cells at:

tumorsite

vaccine site

Hailemichael et al., Nat. Med. 2013
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Dietary & Chronic
Environment- Inflammation
induced Cancer

Autoimmunity
Infection

Inflammation

Adapted from Grivennikov et al. Cell 2010



Bottom Line: Inflammation can be
Good or Bad: Pro or Anti-Tumor

Table 1. Roles of Different Subtypes of Inmune and Inflammatory Cells in Antitumor Immunity and Tumor-Promoting Inflammation

Cell Types

Antitumor

Tumor-Promating

Macrophages, dendritic cells,
myeloid-derived suppressor cells

Mast cells

B cells

CD8*

CD4"

CD4"

CD4"
CD4"

T cells

Th2 cells

Th1 cells

Th17 cells

Treg cells

Natural killer cells

Natural killer T cells

Neutrophils

Antigen presentation; production of cytokines
(IL-12 and type | IFN)

Production of tumor-specific antibodies?

Direct lysis of cancer cells; production of
cytotoxic cytokines

Help to cytotoxic T lymphocytes (CTLs) in
tumor rejection; production of cytokines (IFNvy)

Activation of CTLs

Suppression of inflammation (cytokines and
other suppressive mechanisms)

Direct cytotoxicity toward cancer cells;
production of cytotoxic cytokines

Direct cytotoxicity toward cancer cells;
production of cytotoxic cytokines

Direct cytotoxicity; regulation of CTL responses

Immunosuppression; production of cytokines,
chemokines, proteases, growth factors, and
angiogenic factors

Production of cytokines

Production of cytokines and antibodies;
activation of mast cells; immunosuppression

Production of cytokines?
Education of macrophages; production of
cytokines; B cell activation

Production of cytokines

Production of cytokines

Immunosuppression; production of cytokines

Production of cytokines, proteases, and ROS

Grivennikov et al. Cell 2010



In the Clinic: Cancer Therapies that
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In the Clinic: Cancer Therapies that
Block Bad Inflammation

COX-2 inhibitor
VEGF blocker

IL-13 blocker
Cytokine Regulators

Aspirin, Celecoxib (colorectal)
Bevacizumab, Sorafenib (several)
IL-1Ra (MM)

Lenalidomide (MDS, MM)
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In the Clinic: Cancer Therapies that
Block Bad Inflammation

COX-2 inhibitor Aspirin, Celecoxib (colorectal)
VEGF blocker Bevacizumab, Sorafenib (several)
IL-1[3 blocker IL-1Ra (MM)

Cytokine Regulators Lenalidomide (MDS, MM)

Kill Helicobacter Pylori Clarithrom./Amoxicillin (gastric)
Remove suppressors Cycl/Fludar + T cells (melanoma)
Cytotoxic Therapy?  Radiation/Chemother. (all cancers)

Targeted Therapy? TKI inhibitors (many cancers)



In the Clinic: Cancer Therapies that
Induce Good Inflammation
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In the Clinic: Cancer Therapies that
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In the Clinic: Cancer Therapies that
Induce Good Inflammation

Bacteria BCG (bladder)

TLR agonists Imiquimod (basal cell carcinoma)
CpG (B cell ymphoma)

Cytokines IL-2 (melanoma, renal)
IFN-o. (melanoma, renal, CML)

Antibodies aCTLA4/aPD(L)-1 mAb (melanoma)
Surgery Danger/inflammation? (cervical)

Hem. Stem Cells Stem Cell Transpl. (leukemia, lymphoma)
T cells Adoptive T cell Transfer (melanoma)
Vaccine PAP-loaded DCs (prostate)



How therapeutics may promote cancer

induce mutation (chemotherapy)

induce inflammation (cytokines, TLR agonists, agonistic
antibodies)

change the microbiome (antibiotics, foods)?
block cells/factors that suppress cancer

CD8* T cells/NK cells

type | IFN, IFN-y

TNF-oa - lymphoma?

IL-157

IL-12/1L-23

IL-17A7?



Take Home Messages

Tumor-
induced
Inflammation

Dietary & Chronic
Environment- Inflammation

induced Ca ncer Autoimmunity

Inflammation Infection

Inflammation is a classic hallmark of cancer

Innate Immunity & Inflammation can promote or suppress
cancer

Manipulating immunity can promote or suppress cancer

Understanding of inflammatory cells & molecules in cancer
is limited but growing, allowing therapeutic intervention
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What i1s a Cancer Vaccine?

A preparation of a tumor antigen (usually protein) that upon
administration stimulates antibody production or cellular anti-

tumor immunity.



When could cancer vaccines be useful?

e Cancer Prevention

e Cancer therapy



When could cancer vaccines be useful?

e Cancer Prevention

 Cancer therapy



What i1s a Cancer Vaccine?

A preparation of a tumor antigen (usually protein) that upon
administration stimulates antibody production or cellular anti-

tumor iImmunity.



What i1s a Cancer Vaccine?

peptide(s)
A preparation of a tumor antigen (usually protein) that upon

administration stimulates antibody production or cellular anti-

tumor iImmunity.



Tumor cell lysis

, Tumor-Associated Antigens

8
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genicity ce
Foreign
. _/

Non-mutated antigens (normal)

- Self Ags - ubiquitous, not tumor-specific (eg. actin, vimentin) > 98%

_9:- - Tissue differentiation Ags (eg. gp100, Tyrosinase, MART-1/Melan-A)

_gﬁl - Cancer / testis Ags (eg. MAGE, GAGE, NY-ESO-1)

9:- - Over-expressed in tumors (eg. KIT, HER2, HERV)

Adapted from Dr. Gregory Lizee, Melanoma Med. Oncol.



, Tumor-Associated Antigens
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Tumor cell lysis

Cytokine release
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The prevalence of somatic mutations across human cancer types
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Somatic mutation prevalence
(number mutations per megabase)
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Signatures of mutational processes in human cancer Alexandrov et al.
Nature Volume: 500,Pages:415-421Date published:(22 August 2013)DOIl:doi:10.1038/nature12477



Mutated Peptides as Cancer Antigens
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From Mutation to VVaccine

AN UNANYN NN \N
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Mutated peptide
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Mutant protein P e t Vaccination o
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‘ spectrometry mutated peptides
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adapted from Overwijk et al., JITC, 2013



What i1s a Cancer Vaccine?

vaccine adjuvant

e

A preparation of a tumor antigen (usually protein) that upon
administration stimulates antibody production or cellular anti-

tumor iImmunity.



Vaccine Adjuvants

e mechanisms of action:

0 antigen depot for prolonged release
O protects antigen from degradation
O increases antigen uptake by APCs

0 pro-inflammatory/pro-immunogenic milieu



The NEW ENGLAND JOURNAL of MEDICINE

“ ORIGINAL ARTICLE

op100 Peptide Vaccine and Interleukin-2
in Patients with Advanced Melanoma

Douglas J. Schwartzentruber, M.D., David H. Lawson, M.D.,
Jon M. Richards, M.D., Ph.D., Robert M. Conry, M.D.,
Donald M. Miller, M.D., Ph.D., Jonathan Treisman, M.D., Fawaz Gailani, M.D.,
Lee Riley, M.D., Ph.D., Kevin Conlon, M.D., Barbara Pockaj, M.D.,

Kari L. Kendra, M.D., Ph.D., Richard L. White, M.D., Rene Gonzalez, M.D.,
Timothy M. Kuzel, M.D., Brendan Curti, M.D., Phillip D. Leming, M.D.,
Eric D. Whitman, M.D., Jai Balkissoon, M.D., Douglas S. Reintgen, M.D.,

Howard Kaufman, M.D., Francesco M. Marincola, M.D., Maria J. Merino, M.D.,
Steven A. Rosenberg, M.D., Ph.D., Peter Choyke, M.D., Don Vena, B.S.,
and Patrick Hwu, M.D.



gp100 peptide vaccine has activity In
metastatic melanoma

Stage IV and locally advanced stage |Il melanoma patients

High-dose IL-2 +/- gp100 peptide in IFA (= water-in-oil emulsion)

IL-2+gpl100/IFA IL-2 p-value
Overall response rate 22.1% 9.7% 0.022
Progression free survival 2.9 months 1.6 months 0.010
Median overall survival 17.6 months 12.8 months 0.096

Schwartzentruber et al., NEJM 2011



Clinical Trials of Cancer Vaccines

402 open studies (USA only) using cancer vaccines (www.clinicaltrial.gov)

1. Study of Peptide Vaccination With Tumor Associated Antigens Mixed With Montanide in Patients With CNS Tumors
2. CpG 7909/1FA With or Without Cyclophosphamide in Combination Either With NY-ESO-1-derived Peptides or the NY-

ESO-1 Protein for NY-ESO-1-expressing Tumors
Vaccine Therapy in Treating Patients With Non-Small Cell Lung Cancer (NSCLC) Stages IlIB/IV

4. Randomized Study of Adjuvant WT-1 Analog Peptide Vaccine in Patients With Malignant Pleural Mesothelioma (MPM)

After Completion of Combined Modality Therapy
Immunotherapy of Stage IlI/IV Melanoma Patients

6. A Clinical Trial of Autologous Oxidized Tumor Cell Lysate Vaccine For Recurrent Ovarian, Fallopian Tube or Primary

8.
9.

Peritoneal Cancer

. Vaccine Therapy and Monoclonal Antibody Therapy in Treating Patients With Stage IIl or Stage IV Melanoma That

Cannot Be Removed by Surgery
Safety Study of Multiple-Vaccine to Treat Metastatic Breast Cancer
IDO Peptide Vaccination for Stage IlI-IV Non Small-cell Lung Cancer Patients.

10.Survivin Vaccine Therapy for Patients With Malignant Gliomas
11.Phase | Poly IC:LC and NY-ESO-1/gp100/MART (Melanoma)

12.A Phase | Study of WT1 Peptides to Induce Anti-Leukemia Immune Responses Following Autologous or Allogeneic

Transplantation for AML, CML, ALL, MDS, and B Cell Malignancies

13.Vaccination of High Risk Breast Cancer Patients
14.MAGE-A3/HPV 16 Vaccine for Squamous Cell Carcinoma of the Head and Neck

15.Novel Adjuvants for Peptide-Based Melanoma Vaccines



Peptide-based Cancer Vaccines

The NEW ENGLAND JOURNAL Uf MEDICINE

‘ ORIGINAL ARTICLE ‘

Vaccination against HPV-16 Oncoproteins
for Vulvar Intraepithelial Neoplasia

Gemma G. Kenter, M.D., Ph.D., Marij J).P. Welters, Ph.D.,
A. Rob P.M. Valentijn, Ph.D., Margriet ].G. Lowik,

Dorien M.A. Berends-van der Meer, Annelies P.G. Vloon, Farah Essahsah,
Lorraine M. Fathers, Rienk Offringa, Ph.D., Jan Wouter Drijfhout, Ph.D.,
Amon R. Wafelman, Ph.D., Jaap Oostendorp, Ph.D., Gert Jan Fleuren, M.D., Ph.D.,
Sjoerd H. van der Burg, Ph.D., and Cornelis J.M. Melief, M.D., Ph.D.

79% clinical response
47% CR (>24 months)



Immune response can correlate with
clinical outcome € 1o- —
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Multipeptide immune response to cancer vaccine
IMA901 after single-dose cyclophosphamide associates
with longer patient survival

Steffen Walter!2!, Toni Weinschenk!-?!, Arnulf Stenzl?, Romuald Zdrojowy>, Anna Pluzanska*, Cezary Szczylik®,
Michael Staehler®, Wolfram Brugger”, Pierre-Yves Dietrich®, Regina Mendrzyk!, Norbert Hilf!, Oliver Schoor!,
Jens Fritsche!, Andrea Mahr!, Dominik Maurer!, Verona Vass!, Claudia Trautwein!, Peter Lewandrowskil,
Christian Flohr!, Heike Pohla®:!?, Janusz J Stanczak!!, Vincenzo Bronte!2, Susanna Mandruzzato!3-14,

Tilo Biedermann'®, Graham Pawelec'®, Evelyna Derhovanessian'®, Hisakazu Yamagishi'”, Tsuneharu Miki'8,
Fumiya Hongo!®, Natsuki Takaha!®, Kosei Hirakawa!?, Hiroaki Tanaka'®, Stefan Stevanovic??, Jiirgen Frisch!,
Andrea Mayer-Mokler!, Alexandra Kirner!, Hans-Georg Rammensee?’, Carsten Reinhardt!?! &

Harpreet Singh-Jasuja!-2!



Vaccination With Patient-Specific Tumor-Derived Antigen
in First Remission Improves Disease-Free Survival in

Follicular Lymphoma

Stephen ]. Schuster, Sattva S. Neelapu, Barry L. Gause, John E. Janik, Franco M. Muggia, Jon P. Gockerman,
Jane N. Winter, Christopher R. Flowers, Daniel A. Nikcevich, Eduardo M. Sotomayor, Dean S. McGaughey,
Elaine S. Jaffe, Elise A. Chong, Craig W. Reynolds, Donald A. Berry, Carlos F. Santos, Mihaela A. Popa,
Amy M. McCord, and Larry W. Kwak

B 100 - TreatmentArm n  Events Median (mo) 95% ClI
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Question

Why do many vaccinated cancer patients not
experience tumor regression despite increased

levels of cancer-specific T cells?



Question

Why do many vaccinated cancer patients not
experience tumor regression despite increased

levels of cancer-specific T cells?

* iImmunosuppressive tumor microenvironment
e too few T cells induced
e poor T cell effector function/wrong phenotype

 poor T cell trafficking to tumor



Combination Adjuvants are Key
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Where are the T cells?

gpl100/IFA s.c. + eLuc-transduced pmel-1 T cells I.v.

Rabinovich et al., PNAS 2008

day O
saline/IFA 2

tumor




Oil-based vaccines sequester
T cells at the vaccination site

gp100/IFA

+ covax pmel-1

T cells at

tumor site

Hailemichael et al., Nat. Med. 13, 2013



Water-based vaccines permit
T cell accumulation in tumor

gp100/IFA gp100/saline
+ covax pmel-1 + covax
. T cells at .
tumor site

Hailemichael et al., Nat. Med. 13, 2013



Water-based vaccines permit
T cell accumulation in tumor

gp100/IFA
+ Ccovax

gp100/saline
+ covax

pmel-1
T cells at

tumor site

Hailemichael et al., Nat. Med. 13, 2013



Tumor therapy with long-lived vs.

short-lived vaccine
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Tumor therapy with long-lived vs.

short-lived vaccine
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T cell Activation: 2 signals
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T cell Activation: 2 signals

IL-2
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Signal 2: Costimulation
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Signal 1: Antigen Recognition
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T cell Activation: 2 signals
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Anti-CTLA-4 therapy
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Improved Survival with Ipilimumab in Patients

with Metastatic Melanoma

F. Stephen Hodi, M.D., Steven J. O'Day, M.D., David F. McDermott, M.D., Robert W. Weber, M.D.,
Jeffrey A. Sosman, M.D., John B. Haanen, M.D., Rene Gonzalez, M.D., Caroline Robert, M.D., Ph.D.,

Dirk Schadendorf, M.D., Jessica C. Hassel, M.D., Wallace Akerley, M.D., Alfons J.M. van den Eertwegh, M.D., Ph.D.,
Jose Lutzky, M.D., Paul Lorigan, M.D., Julia M. Vaubel, M.D., Gerald P. Linette, M.D., Ph.D., David Hogg, M.D.,
Christian H. Ottensmeier, M.D., Ph.D., Celeste Lebbé, M.D., Christian Peschel, M.D., lan Quirt, M.D.,
Joseph I. Clark, M.D., Jedd D. Wolchok, M.D., Ph.D., Jeffrey S. Weber, M.D., Ph.D., Jason Tian, Ph.D.,
Michael J. Yellin, M.D., Geoffrey M. Nichol, M.B., Ch.B., Axel Hoos, M.D., Ph.D., and Walter J. Urba, M.D., Ph.D.
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Complete Responder: Patient 11
Metastatic Melanoma

Experienced complete resolution of 2 subcutaneous nodules, 31
lung metastases and 0.5 cm brain metastasis.

BMS




Slow, prolonged tumor regression

Week 14: improved

Week 108: complete remission




Checkpoint Blockade + Vaccines

Vaccination and anti-CTLA-4/PD-1 both

activate T cells, through different pathways,
and could synergize.

However, this was not observed.
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Survival (%)

|FA-based vaccination does not
synergize with anti-CTLA-4 therapy
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Yared Hailemichael



|IFA-based vaccination sequesters
T cells induced by anti-CTLA-4 therapy
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|IFA-based vaccination sequesters
T cells induced by anti-CTLA-4 therapy
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Virus-based vaccination
synergizes with anti-CTLA-4 therapy
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Conclusions

Cancer vaccines can have clinical impact
T cell responses tend to be (too) low or dysfunctional

To induce better T cell / clinical responses:
Formulation matters: possible T cell sequestration

Add immunomodulators (cytokines, TLR agonists)

Combine with checkpoint blockade

Combination Vaccines: Multiple Immunostimulatory Molecules
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