GENETIC ANCESTRY & CANCER

UPR /MD Anderson Cancer Biology Course January 10, 2015 Julie Dutil, Ph.D.

PONCE HEALTH SCIENCES UNIVERSITY

PONCE RESEARCH INSTITUTE

Cancer Genetics

Somatic mutations

-Non-heritable;

-Determine be involved in tumor response to treatment and prognosis;

Germline mutations

-Determine the risk that an individual will develop

cancer;

-Heritable;

Cancer genetics

Timothy J. R. Harris & Frank McCormick Nature Reviews Clinical Oncology 7, 251-265 (May 2010)

Cancer genetics

Low risk group -Reduced surveillance

GENETIC TESTING

Moderate risk group -Moderate surveillance -Chemoprevention (?) -Common

High risk group -Increased surveillance -Chemoprevention -Preventive surgery -Rare

Cancer Disparities

Number of new cases (**■**) and deaths (**■**) per year;

National Cancer Institute; statistics for 2000-2004, age-adjusted

Cancer Disparities

MYH9 haplotypes in kidney disease

Oleksyk et al. (2010) PLoS One 5(7):e11474

Admixed populations

In genetics, an *'admixed population'* refers to the intermixture of previously isolated populations

Admixed populations

Ancestry Informative Markers (AIMs)

Bamshad et al. (2004) Nature Reviews Genetics 5:598

Global genetic ancestry

Proportion (%) of the genome that originated from each ancestral population that makes up an admixed population

Local genetic ancestry

Ancestral origin of a given locus (site) in the genome

African Americans

African Americans

Bamshad et al. (2004) Nature Reviews Genetics 5:598

Geographical distribution of genomic ancestry proportions in Puerto Rico

Via et al. (2011) PLoS ONE 6 (1) e16513

From Avena S et al (2011) PLoS ONE 7(4):e34695

- Are differences in breast cancer incidence between African American, Hispanics/Latinos and Whites be explained by genetic ancestry?
- Are differences in breast cancer tumor characteristics and prognosis between African American, Hispanics/Latinos and Whites be explained by genetic ancestry?

Table 4. Association between Indigenous American ancestry and demographic variables and reproductive risk factors for breast cancer

% Iı America	P*		
Controls	Cases	All	
42.6 (200)	42.6 (106)	42.6	0.24
40.1 (129)	40.8 (128)	40.4	
45.3 (169)	45.9 (80)	45.5	0.001
40.9 (57)	38.0 (49)	39.6	
35.7 (53)	37.7 (70)	36.8	
36.2 (50)	44.5 (35)	39.6	
43.3 (209)	43.7 (124)	43.5	0.01
38.6 (120)	39.2 (110)	38.9	
42.3 (269)	42.7 (173)	41.9	0.50
41.4 (60)	38.6 (61)	40.4	
42.0 (179)	41.3 (101)	41.7	0.89
41.1 (150)	41.8 (133)	41.5	
34.5 (47)	33.2 (48)	33.8	0.0005
45.7 (121)	44.3 (71)	45.2	
41.7 (86)	42.6 (59)	42.1	
39.3 (75)	44.3 (56)	41.4	
39.4 (124)	37.9 (103)	38.7	0.01
42.9 (201)	44.4 (126)	43.5	
45.3 (99)	39.1 (65)	42.8	0.15
38.3 (55)	39.0 (46)	38.7	
	% In America Controls 42.6 (200) 40.1 (129) 45.3 (169) 40.9 (57) 35.7 (53) 36.2 (50) 43.3 (209) 38.6 (120) 42.3 (269) 41.4 (60) 42.0 (179) 41.1 (150) 34.5 (47) 45.7 (121) 41.7 (86) 39.3 (75) 39.4 (124) 42.9 (201) 45.3 (99) 38.3 (55)	% Indigenous American ancestry Controls Cases 42.6 (200) 42.6 (106) 40.1 (129) 40.8 (128) 45.3 (169) 45.9 (80) 40.9 (57) 38.0 (49) 35.7 (53) 37.7 (70) 36.2 (50) 44.5 (35) 43.3 (209) 43.7 (124) 38.6 (120) 39.2 (110) 42.3 (269) 42.7 (173) 41.4 (60) 38.6 (61) 42.0 (179) 41.3 (101) 41.1 (150) 41.8 (133) 34.5 (47) 33.2 (48) 45.7 (121) 44.3 (71) 41.7 (86) 42.6 (59) 39.3 (75) 44.3 (56) 39.4 (124) 37.9 (103) 42.9 (201) 44.4 (126) 45.3 (99) 39.1 (65) 38.3 (55) 39.0 (46)	% Indigenous American ancestry (n) Controls Cases All 42.6 (200) 42.6 (106) 42.6 (40.1 (129) 40.8 (128) 40.4 45.3 (169) 45.9 (80) 45.5 (40.9 (57) 38.0 (49) 39.6 (35.7 (53) 37.7 (70) 36.8 (36.2 (50) 44.5 (35) 39.6 (35.7 (52) 39.2 (110) 38.9 43.3 (209) 43.7 (124) 43.5 (35) 39.2 (110) 38.9 42.3 (269) 42.7 (173) 41.9 (30.4 (124)) 43.5 (35) 38.6 (120) 39.2 (110) 38.9 42.3 (269) 42.7 (173) 41.9 (40.4 (126)) 42.0 (179) 41.3 (101) 41.7 (41.1 (150)) 41.8 (133) 41.5 34.5 (47) 33.2 (48) 33.8 (45.7 (121)) 45.7 (121) 44.3 (56) 41.4 39.4 (124) 37.9 (103) 38.7 (42.9 (201)) 39.4 (124) 37.9 (103) 38.7 (42.9 (201)) 45.3 (99) 39.1 (65) 42.8 (38.7 (38.7 (42.8 (38.7 (42.8 (38.7 (42.8 (38.7 (43.7 (43.8 (43.5

*Ps reported are the significance levels for association between ancestry and the risk factor, using ANOVA and adjusting for case/control status. There were no significant interaction terms among case/control status, genetic ancestry, and any of these risk factors.

† Age at natural or surgical menopause.

- Latinas from Northern California;
- Cases and controls (n=563);
- Some breast cancer risk factors are associated with ancestry.

Ziv et al. (2006) CEBP 15(10):1878

- Latinas from Northern California;
- Case (n=492) and controls (n=670);
- European ancestry was associated with breast cancer risk.

Table 2. Multivariate logistic regression model of association between genetic ancestry and breast cancer risk (n = 975)

	OR (95% CI)	P > z
Univariate analysis		
European ancestry*	1.79 (1.28-2.79)	< 0.001
Multivariate analysis		
European ancestry	1.39 (1.06-2.11)	0.013
Age at diagnosis	1.02 (1.01-1.04)	0.013
Foreign born	0.73 (0.54-0.99)	0.046
Family history of breast cancer	1.34 (0.88-2.04)	0.160
Benign breast disease	1.12 (0.77-1.59)	0.580
Age at menarche	0.93 (0.86-1.01)	0.074
Hormone replacement therapy use	0.92 (0.68-1.24)	0.570
Daily alcohol intake [†]	1.98 (1.21-3.24)	0.006
Ln daily kilocalorie intake [‡]	1.78 (1.24-2.42)	0.001
Parity	0.86 (0.80-0.94)	< 0.001
Breast-feeding per child	0.97 (0.95-1.00)	0.070
Education level	1.11 (0.96–1.28)	0.131

NOTE: Thirty-two cases and 25 controls were excluded from the analysis because of missing data.

*OR is for every 25% increase in European ancestry.

[†]Daily intake of >10 versus ≤ 10 g.

[‡]Individuals with daily kilocalorie intake of <600 or >5,000 were excluded from the analysis. Daily kilocalorie intake was log transformed for analysis.

Fejerman et al. Cancer Research 2008; 68(23):9723-8

Research Article

Cancer Epidemiology, Biomarkers & Prevention

European Ancestry Is Positively Associated with Breast Cancer Risk in Mexican Women

Laura Fejerman^{1,3}, Isabelle Romieu^{6,7}, Esther M. John^{8,9}, Eduardo Lazcano-Ponce⁶, Scott Huntsman^{1,3}, Kenneth B. Beckman¹⁰, Eliseo J. Pérez-Stable^{2,3}, Esteban González Burchard⁵, Elad Ziv^{1,3,4}, and Gabriela Torres-Mejía⁶

Abstract

The incidence of breast cancer is 35% lower in Hispanic women living in the San Francisco Bay Area than in non-Hispanic White women. We have previously described a significant association between genetic ancestry and risk for breast cancer in a sample of U.S. Hispanics/Latinas. We retested the association in women residing in Mexico because of the possibility that the original finding may be confounded by U.S. specific unmeasured environmental exposures. We genotyped a set of 106 ancestry informative markers in 846 Mexican women with breast cancer and 1,035 unaffected controls and estimated genetic ancestry using a maximum likelihood method. Odds ratios and 95% confidence intervals (95% CI) for ancestry modeled as a categorical and continuous variable were estimated using logistic regression and adjusted for reproductive and other known risk factors. Greater European ancestry was associated with increased breast cancer risk in this new and independent sample of Mexican women residing in Mexico. Compared with women with 0% to 25% European ancestry, the risk was increased for women with 51% to 75% and 76% to 100% European ancestry [odds ratios, 1.35 (95% CI, 0.96-1.91) and 2.44 (95% CI, 0.94-6.35), respectively; P for trend = 0.044]. For every 25% increase in European ancestry (modeled as a continuous variable), there was a 20% increase in risk for breast cancer (95% CI, 1.03-1.41; P = 0.019). These results suggest that nongenetic factors play a crucial role in explaining the difference in breast cancer incidence between Latinas and non-Latina White women, and it also points out to the possibility of a genetic component to this difference. Cancer Epidemiol Biomarkers Prev; 19(4); 1074-82. ©2010 AACR.

01/10/2015

- Latinas from Northern California;
- Cases (n=899);
- Women with higher Indigenous American ancestry were more likely to die of breast cancer.

Fejerman et al. (2013) Cancer Research 73(24):7243

 Hispanics from Puerto Rico;

- Cases (n=500) and controls (n=500)
- Ancestry is not associated with breast cancer risk.

Dutil et al. manuscript submitted

Galanter et al. (2011) J Allergy Clin Immunol 128(1):37

Native American ancestry

*

-

Mexicans Puerto Ricans

Dutil et al. manuscript submitted

Dutil et al. manuscript submitted

- Genetic association strategy that make use of admixture for identifying disease susceptibility loci;
- Suitable for localizing disease causing alleles that have marked difference of frequency between the different ancestral populations that formed the admixed population.

Smith et al. Nature Reviews Genetics (2005) 6:623

Smith et al. Nature Reviews Genetics (2005) 6:623

- Advantages:
 - Sample size;
 - Number of markers/cost;
 - Understanding health disparities

• Limitations:

- Must have marked differences in disease prevalence;
- Does not identify all disease causing variants.

- Use of admixture mapping for identifying breast cancer susceptibility loci;
- Use of admixture mapping for the identification of prostate cancer susceptibility loci.

Human Molecular Genetics, 2012, Vol. 21, No. 8 1907–1917 doi:10.1093/hmg/ddr617 Advance Access published on January 6, 2012

Admixture mapping identifies a locus on 6q25 associated with breast cancer risk in US Latinas

Laura Fejerman¹, Gary K. Chen³, Celeste Eng², Scott Huntsman¹, Donglei Hu¹, Amy Williams⁴, Bogdan Pasaniuc⁵, Esther M. John^{6,7}, Marc Via^{2,10}, Christopher Gignoux², Sue Ingles³, Kristine R. Monroe³, Laurence N. Kolonel⁸, Gabriela Torres-Mejía⁹, Eliseo J. Pérez-Stable¹, Esteban González Burchard², Brian E. Henderson³, Christopher A. Haiman^{3,*} and Elad Ziv^{1,*}

¹Department of Medicine, Division of General Internal Medicine, Institute for Human Genetics and Helen Diller Family Comprehensive Cancer Center and ²Department of Medicine, Pulmonary and Critical Care Division, Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94158, USA, ³Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA, ⁴Department of Genetics, Harvard Medical School, Boston, MA 02115, USA, ⁵Dept of Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA and ⁶Cancer Prevention Institute of California, Fremont, CA 94538, USA, ⁷Department of Health Research and Policy, Stanford University School of Medicine, Stanford, CA 94305, USA, ⁸University of Hawaii Cancer Center, Honolulu, HI 96813, USA, ⁹Instituto Nacional de Salud Publica, Cuernavaca, Morelos 62100, Mexico, and ¹⁰Unit of Anthropology, Department of Animal Biology, Universitat de Barcelona, Barcelona, Spain

Received August 10, 2011; Revised October 23, 2011; Accepted December 28, 2011

Fejerman et al. 2012 Human Molecular Genetics 21(8):1907-1917

ARTICLE

Received 8 May 2014 | Accepted 12 Sep 2014 | Published 20 Oct 2014

DOI: 10.1038/ncomms6260

OPEN

Genome-wide association study of breast cancer in Latinas identifies novel protective variants on 6q25

Laura Fejerman¹, Nasim Ahmadiyeh², Donglei Hu¹, Scott Huntsman¹, Kenneth B. Beckman³, Jennifer L. Caswell¹, Karen Tsung², Esther M. John^{4,5}, Gabriela Torres-Mejia⁶, Luis Carvajal-Carmona^{7,8}, María Magdalena Echeverry⁷, Anna Marie D. Tuazon⁷, Carolina Ramirez⁸, COLUMBUS Consortium[†], Christopher R. Gignoux⁹, Celeste Eng¹⁰, Esteban Gonzalez-Burchard¹⁰, Brian Henderson¹¹, Loic Le Marchand¹², Charles Kooperberg¹³, Lifang Hou¹⁴, Ilir Agalliu¹⁵, Peter Kraft¹⁶, Sara Lindström¹⁶, Eliseo J. Perez-Stable¹, Christopher A. Haiman¹¹ & Elad Ziv¹

Table 1 | Discovery and replication of newly discoveredprotective variants at 6q25 related to breast cancer risk inLatinas.

6q25 Region	Alleles*	OR	95% CI	P value	MAF [†]		
Discovery (1,497 cases/3,213 controls)							
rs140068132	A/G	0.60	0.49-0.72	3 × 10 ^{- 7}	9%		
rs147157845	C/A	0.59	0.48-0.72	1×10^{-7}	9%		
Replication Mexicans (977 cases/1,158 controls)							
rs140068132		0.63	0.53-0.75	3×10^{-7}	15%		
rs147157845		0.66	0.55-0.78	3 × 10 ^{- 6}	15%		
Replication Colombians (546 cases/440 controls)							
rs140068132		0.54	0.41-0.71	1×10 ⁻⁵	10%		
rs147157845		0.55	0.42-0.72	2×10^{-5}	10%		
Replication WHI Hispanics (120 cases/3,373 controls)							
rs140068132		0.61	0.31-1.22	0.16	7%		
rs147157845		0.60	0.30-1.19	0.15	7%		
Meta-analysis (3,140 cases/8,184 controls)							
rs140068132		0.60	0.53-0.67	9 × 10 ^{- 18}			
rs147157845		0.61	0.54-0.68	2×10 ⁻¹⁶			
CI, confidence interval Initiative. *Reference allele/teste	; MAF, minor al ed allele.	lele frequer	ncy; OR, odds ratio	o; WHI, Women's	Health		
INIAL rested allele.							

Fejerman et al. (2014) Nature Communications 5:5261

Admixture mapping identifies 8q24 as a prostate cancer risk locus in African-American men

Matthew L. Freedman^{a,b,c}, Christopher A. Haiman^{c,d}, Nick Patterson^{b,c}, Gavin J. McDonald^{b,e}, Arti Tandon^{b,e}, Alicja Waliszewska^{b,e,f}, Kathryn Penney^b, Robert G. Steen^{e,g}, Kristin Ardlie^{b,h}, Esther M. John^{i,j}, Ingrid Oakley-Girvan^{i,j}, Alice S. Whittemore^j, Kathleen A. Cooney^{k,I}, Sue A. Ingles^d, David Altshuler^{b,e,m,n}, Brian E. Henderson^d, and David Reich^{b,e,o}

^aDepartment of Medical Oncology, Dana–Farber Cancer Institute, Boston, MA 02115; ^bProg Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142; ^dDepartment o Southern California, Los Angeles, CA 90089; Departments of ^eGenetics and ^mMedicine and ^l ^fLaboratory of Molecular Immunology, Center for Neurologic Disease, Brigham and Womei of SeraCare Life Sciences, Inc., Cambridge, MA 02139; ⁱNorthern California Cancer Center, F Stanford University School of Medicine, Stanford, CA 94305; ^kDepartments of Medicine and Michigan, Ann Arbor, MI 48109; and ⁿCenter for Human Genetic Research and Department Boston, MA 02114

Communicated by Eric S. Lander, Broad Institute, Cambridge, MA, July 12, 2006 (received fc

Freedman et al. (2006) PNAS 103(38): 14068

Multiple regions within 8q24 independently affect risk for prostate cancer

Christopher A Haiman¹, Nick Patterson², Matthew L Freedm Alicja Waliszewska^{2,4,5}, Julie Neubauer^{2,4}, Arti Tandon^{2,4}, Chi Steven C Greenway⁴, Daniel O Stram¹, Loic Le Marchand⁶, I David Wong¹, Loreall C Pooler¹, Kristin Ardlie^{2,7}, Ingrid Oal Kathleen A Cooney^{10,11}, Esther M John^{8,9}, Sue A Ingles¹, Dav Brian E Henderson¹ & David Reich^{2,4}

Hainan et al. (2007) Nature Genetics 39(5): 638

Sampling bias in genomics

Most genome-wide association studies have been of people of European descent.

Bustamante CD, Gonzalez Burchard E, De La Vega FM (2011) Nature 475:163

Private and shared variants

The 1000 Genomes Project Consortium. (2012) Nature 491: 56

Cancer genetics

Timothy J. R. Harris & Frank McCormick Nature Reviews Clinical Oncology 7, 251-265 (May 2010)

BRCA clinical significance

Cancer risks in BRCA carriers relative to the general population.

Myriad Genetics Laboratories

BRCA mutation spectrum

Dutil et al. Manuscript submitted

BRCA mutation spectrum

Dutil *et al*. Manuscript submitted

- Genetic ancestry and environmental factors explain some of the differences in disease risk and presentation among different ethnic groups;
- Admixture mapping have been used for localizing regions of the genome or variants underlying the inter-ethnic differences in cancer susceptibility (breast and prostate);
- A better understanding of the genetic basis to cancer susceptibility is a key component for eliminating cancer health disparity.

Conclusions

SAMPLING BIAS

Most genome-wide association studies have been of people of European descent.

Bustamante CD, Gonzalez Burchard E, De La Vega FM (2011) Nature 475:163

